B. Painting The Wall
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

User ainta decided to paint a wall. The wall consists of n2 tiles, that are arranged in an n × n table. Some tiles are painted, and the others are not. As he wants to paint it beautifully, he will follow the rules below.

  1. Firstly user ainta looks at the wall. If there is at least one painted cell on each row and at least one painted cell on each column, he stops coloring. Otherwise, he goes to step 2.
  2. User ainta choose any tile on the wall with uniform probability.
  3. If the tile he has chosen is not painted, he paints the tile. Otherwise, he ignores it.
  4. Then he takes a rest for one minute even if he doesn't paint the tile. And then ainta goes to step 1.

However ainta is worried if it would take too much time to finish this work. So he wants to calculate the expected time needed to paint the wall by the method above. Help him find the expected time. You can assume that choosing and painting any tile consumes no time at all.

Input

The first line contains two integers n and m (1 ≤ n ≤ 2·103; 0 ≤ m ≤ min(n2, 2·104)) — the size of the wall and the number of painted cells.

Next m lines goes, each contains two integers ri and ci (1 ≤ ri, ci ≤ n) — the position of the painted cell. It is guaranteed that the positions are all distinct. Consider the rows of the table are numbered from 1 to n. Consider the columns of the table are numbered from 1 to n.

Output

In a single line print the expected time to paint the wall in minutes. Your answer will be considered correct if it has at most 10 - 4 absolute or relative error.

Examples
input
5 2
2 3
4 1
output
11.7669491886
input
2 2
1 1
1 2
output
2.0000000000
input
1 1
1 1
output
0.0000000000


 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 2010 double f[Maxn][Maxn];
bool h[Maxn],l[Maxn]; int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) h[i]=l[i]=;
for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
h[x]=;l[y]=;
}
int hh=,ll=;
for(int i=;i<=n;i++) if(h[i]) hh++;
for(int i=;i<=n;i++) if(l[i]) ll++;
for(int i=n;i>=hh;i--)
for(int j=n;j>=ll;j--)
{
if(i==n&&j==n) f[i][j]=;
else
{
double pi=1.0*i/n,pj=1.0*j/n;
f[i][j]=(pi*pj+(f[i+][j]+)*(-pi)*pj+(f[i][j+]+)*pi*(-pj)+(f[i+][j+]+)*(-pi)*(-pj))/(1.0-pi*pj);
}
}
printf("%.10lf\n",f[hh][ll]);
return ;
}

【CF398B】B. Painting The Wall(期望)的更多相关文章

  1. Painting The Wall 期望DP Codeforces 398_B

    B. Painting The Wall time limit per test 1 second memory limit per test 256 megabytes input standard ...

  2. Codeforces Round #233 (Div. 2)D. Painting The Wall 概率DP

                                                                                   D. Painting The Wall ...

  3. CF398B Painting The Wall 概率期望

    题意:有一个 $n * n$ 的网格,其中 $m$ 个格子上涂了色.每次随机选择一个格子涂色,允许重复涂,求让网格每一行每一列都至少有一个格子涂了色的操作次数期望.题解:,,这种一般都要倒推才行.设$ ...

  4. codeforces D. Painting The Wall

    http://codeforces.com/problemset/problem/399/D 题意:给出n和m,表示在一个n*n的平面上有n*n个方格,其中有m块已经涂色.现在随机选中一块进行涂色(如 ...

  5. [Codefoeces398B]Painting The Wall(概率DP)

    题目大意:一个$n\times n$的棋盘,其中有$m$个格子已经被染色,执行一次染色操作(无论选择的格子是否已被染色)消耗一个单位时间,染色时选中每个格子的概率均等,求使每一行.每一列都存在被染色的 ...

  6. cf 398B. Painting The Wall

    23333,还是不会..%%%http://hzwer.com/6276.html #include <bits/stdc++.h> #define LL long long #defin ...

  7. 【HDU4391】【块状链表】Paint The Wall

    Problem Description As a amateur artist, Xenocide loves painting the wall. The wall can be considere ...

  8. HDU 4391 Paint The Wall(分块+延迟标记)

    Paint The Wall Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. 5 Tips for creating good code every day; or how to become a good software developer

    Being a good developer is like being any other good professional, it’s all it’s about doing as much ...

随机推荐

  1. js鼠标自定移入输入框文本框光标自动定位到文本框

    1.干货直接上 选中输入框设置如下: document.getElementById("Text1").focus();

  2. [JL]最后的晚餐 动态规划(DP) codevs5318

    [JL]最后的晚餐 TimeLimit:1000MS  MemoryLimit:1000KB 64-bit integer IO format:%lld Problem Description [题库 ...

  3. mysql 增加字段脚本,以及删除主键约束的脚本,存储过程

    //增加一个库下面所有表的row_id和其他9个字段的存过 DELIMITER $$ USE `erptest`$$ DROP PROCEDURE IF EXISTS `UPTABLE`$$ CREA ...

  4. AopProxyUtils.getSingletonTarget(Ljava/lang/Object;)Ljava/lang/Object;大坑

    这个问题太坑了,试了好多个版本,都是依赖冲突导致的, https://blog.csdn.net/qq_15003505/article/details/78430595 最后找到这一篇博客解决了,就 ...

  5. Java高性能并发编程——线程池

    在通常情况下,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的 ...

  6. collision

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAd0AAACYCAIAAAAuvaRSAAAAA3NCSVQICAjb4U/gAAAgAElEQVR4Xu

  7. Linux(Centos )的网络内核参数优化来提高服务器并发处理能力【转】

    简介 提高服务器性能有很多方法,比如划分图片服务器,主从数据库服务器,和网站服务器在服务器.但是硬件资源额定有限的情况下,最大的压榨服务器的性能,提高服务器的并发处理能力,是很多运维技术人员思考的问题 ...

  8. Django Rest Framework----ModelViewSet视图 ModelViewSet源码分析

    一.视图类 #bookview是一个视图类,继承自ModelViewSet class BookView(ModelViewSet): throttle_classes = [VisitThrottl ...

  9. python网络编程-Select\Poll\Epoll异步IO

    首先列一下,sellect.poll.epoll三者的区别 select select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组,当select ...

  10. Nginx - 压缩模块

    1. 前言 在 Nginx 中与网页压缩相关的模块有两个:一个是 HttpGzipModule,另一个是 HttpGzipStaticModule.前者用于启用在文件传输过程中使用 gzip 压缩,而 ...