Reading lists for new LISA students(转)
Research in General
Basics of machine learning
Basics of deep learning
Practical recommendations for gradient-based training of deep architectures
Quick’n’dirty introduction to deep learning: Advances in Deep Learning
Contractive auto-encoders: Explicit invariance during feature extraction
An Analysis of Single Layer Networks in Unsupervised Feature Learning
The importance of Encoding Versus Training With Sparse Coding and Vector Quantization
Feedforward nets
“Improving Neural Nets with Dropout” by Nitish Srivastava
“What is the best multi-stage architecture for object recognition?”
MCMC
Radford Neal’s Review Paper (old but still very comprehensive)
Restricted Boltzmann Machines
Unsupervised learning of distributions of binary vectors using 2-layer networks
Training restricted Boltzmann machines using approximations to the likelihood gradient
Tempered Markov Chain Monte Carlo for training of Restricted Boltzmann Machine
Enhanced Gradient for Training Restricted Boltzmann Machines
Using fast weights to improve persistent contrastive divergence
Training Products of Experts by Minimizing Contrastive Divergence
Boltzmann Machines
Deep Boltzmann Machines (Salakhutdinov & Hinton)
A Two-stage Pretraining Algorithm for Deep Boltzmann Machines
Regularized Auto-Encoders
Regularization
Stochastic Nets & GSNs
Others
Slow, Decorrelated Features for Pretraining Complex Cell-like Networks
What Regularized Auto-Encoders Learn from the Data Generating Distribution
Recurrent Nets
Learning long-term dependencies with gradient descent is difficult
Learning recurrent neural networks with Hessian-free optimization
On the importance of momentum and initialization in deep learning,
Long short-term memory (Hochreiter & Schmidhuber)
Long Short-Term Memory in Echo State Networks: Details of a Simulation Study
The "echo state" approach to analysing and training recurrent neural networks
Backpropagation-Decorrelation: online recurrent learning with O(N) complexity
New results on recurrent network training:Unifying the algorithms and accelerating convergence
Convolutional Nets
ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, NIPS 2012.
Optimization issues with DL
Knowledge Matters: Importance of Prior Information for Optimization
Practical recommendations for gradient-based training of deep architectures
Hessian Free
Natural Gradient (TONGA)
NLP + DL
Distributed Representations of Words and Phrases and their Compositionality
Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection
CV+RBM
CV + DL
Scaling Up
DL + Reinforcement learning
Graphical Models Background
An Introduction to Graphical Models (Mike Jordan, brief course notes)
A View of the EM Algorithm that Justifies Incremental, Sparse and Other Variants (Neal & Hinton, important paper to the modern understanding of Expectation-Maximization)
A Unifying Review of Linear Gaussian Models (Roweis & Ghahramani, ties together PCA, factor analysis, hidden Markov models, Gaussian mixtures, k-means, linear dynamical systems)
An Introduction to Variational Methods for Graphical Models (Jordan et al, mean-field, etc.)
Writing
Software documentation
Python, Theano, Pylearn2, Linux (bash) (at least the 5 first sections), git (5 first sections), github/contributing to it (Theano doc), vim tutorial or emacs tutorial
Software lists of built-in commands/functions
Other Software stuff to know about:
screen
ssh
ipython
matplotlib
Reading lists for new LISA students(转)的更多相关文章
- Reading Lists
* Non-academic 1. Slowing Down to the Speed of Life, by Richard Carlson and Joseph Bailey.2. Your Mo ...
- deep learning 的综述
从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...
- 深度学习阅读列表 Deep Learning Reading List
Reading List List of reading lists and survey papers: Books Deep Learning, Yoshua Bengio, Ian Goodfe ...
- Reading With Purpose: A grand experiment
Reading With Purpose: A grand experiment This is the preface to a set of notes I'm writing for a sem ...
- Deep Learning 和 Knowledge Graph howto
领军大家: Geoffrey E. Hinton http://www.cs.toronto.edu/~hinton/ 阅读列表: reading lists and survey papers fo ...
- Courses on Turbulence
Courses on Turbulence Table of Contents 1. Lecture 1.1. UIUC Renewable energy and turbulent environm ...
- The Ph.D. Grind
The Ph.D. Grind A Ph.D. Student Memoir Summary The Ph.D. Grind, a 122-page e-book, is the first know ...
- QuantStart量化交易文集
Over the last seven years more than 200 quantitative finance articles have been written by members o ...
- Teen Readers【青少年读者】
Teen Readers Teens and younger children are reading a lot less for fun, according to a Common Sense ...
随机推荐
- (转载) 天梯赛 L2-018. 多项式A除以B
题目链接 题目描述 这仍然是一道关于A/B的题,只不过A和B都换成了多项式.你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数. 输入格式: 输入分两行,每行给出一个非零多项式,先给出 ...
- 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)
题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...
- 运用jQuery实现动态点赞
写一个动态点赞的小案例吧! 虽然有点low,但是初学者可以看看! .Css文件 .content{ border: 1px solid black; font-size: 20px; height: ...
- Python概念-禁锢术之__slots__
之所以给它起名为禁锢术,并非空缺来风,下面我们来了解一下__slost__ __slost__:其实就是将类中的名称锁定,实例化对象,只可以赋值和调用,不可以删除名字和增加新的名字 代码示例:(实例化 ...
- 【多视图几何】TUM 课程 第6章 多视图重建
课程的 YouTube 地址为:https://www.youtube.com/playlist?list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4 .视频评论区可以找到课 ...
- OpenJ_POJ 1058 Guideposts
Problem OpenJ_POJ Solution 如果我们用 \(G\) 来表示邻接矩阵,那么答案其实就是求\(\sum_{k|i}^n \binom n i G^i\) 为了消除整除的限制,我们 ...
- 个性化你的Git Log的输出格式
git已经变成了很多程序员日常工具之一. git log是查看git历史的好工具,不过默认的格式并不是特别的直观. 很多时候想要更简便的输出更多或者更少的信息,这里列出几个git log的format ...
- java中Cookie使用问题(message:invalid character [32] was present in the Cookie value)
1. 问题描述 Servlet中执行下面一段代码: public void doGet(HttpServletRequest request, HttpServletResponse response ...
- 一文看懂python主要应用领域或应用场景
Python简介 Python(英国发音:/ˈpaɪθən/美国发音:/ˈpaɪθɑːn/),是一种面向对象的解释型计算机程序设计语言,由荷兰人GuidovanRossum于1989年发明,第一个公开 ...
- python之uinttest单元测试框架
unittest,是python中针对单元测试的一个测试框架 相当于python版的junit 简单举个例子: 如图,使用时,测试类需要继承单元测试TestCase这个类 必须要有setUp()和te ...