Reading lists for new LISA students(转)
Research in General
Basics of machine learning
Basics of deep learning
Practical recommendations for gradient-based training of deep architectures
Quick’n’dirty introduction to deep learning: Advances in Deep Learning
Contractive auto-encoders: Explicit invariance during feature extraction
An Analysis of Single Layer Networks in Unsupervised Feature Learning
The importance of Encoding Versus Training With Sparse Coding and Vector Quantization
Feedforward nets
“Improving Neural Nets with Dropout” by Nitish Srivastava
“What is the best multi-stage architecture for object recognition?”
MCMC
Radford Neal’s Review Paper (old but still very comprehensive)
Restricted Boltzmann Machines
Unsupervised learning of distributions of binary vectors using 2-layer networks
Training restricted Boltzmann machines using approximations to the likelihood gradient
Tempered Markov Chain Monte Carlo for training of Restricted Boltzmann Machine
Enhanced Gradient for Training Restricted Boltzmann Machines
Using fast weights to improve persistent contrastive divergence
Training Products of Experts by Minimizing Contrastive Divergence
Boltzmann Machines
Deep Boltzmann Machines (Salakhutdinov & Hinton)
A Two-stage Pretraining Algorithm for Deep Boltzmann Machines
Regularized Auto-Encoders
Regularization
Stochastic Nets & GSNs
Others
Slow, Decorrelated Features for Pretraining Complex Cell-like Networks
What Regularized Auto-Encoders Learn from the Data Generating Distribution
Recurrent Nets
Learning long-term dependencies with gradient descent is difficult
Learning recurrent neural networks with Hessian-free optimization
On the importance of momentum and initialization in deep learning,
Long short-term memory (Hochreiter & Schmidhuber)
Long Short-Term Memory in Echo State Networks: Details of a Simulation Study
The "echo state" approach to analysing and training recurrent neural networks
Backpropagation-Decorrelation: online recurrent learning with O(N) complexity
New results on recurrent network training:Unifying the algorithms and accelerating convergence
Convolutional Nets
ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, NIPS 2012.
Optimization issues with DL
Knowledge Matters: Importance of Prior Information for Optimization
Practical recommendations for gradient-based training of deep architectures
Hessian Free
Natural Gradient (TONGA)
NLP + DL
Distributed Representations of Words and Phrases and their Compositionality
Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection
CV+RBM
CV + DL
Scaling Up
DL + Reinforcement learning
Graphical Models Background
An Introduction to Graphical Models (Mike Jordan, brief course notes)
A View of the EM Algorithm that Justifies Incremental, Sparse and Other Variants (Neal & Hinton, important paper to the modern understanding of Expectation-Maximization)
A Unifying Review of Linear Gaussian Models (Roweis & Ghahramani, ties together PCA, factor analysis, hidden Markov models, Gaussian mixtures, k-means, linear dynamical systems)
An Introduction to Variational Methods for Graphical Models (Jordan et al, mean-field, etc.)
Writing
Software documentation
Python, Theano, Pylearn2, Linux (bash) (at least the 5 first sections), git (5 first sections), github/contributing to it (Theano doc), vim tutorial or emacs tutorial
Software lists of built-in commands/functions
Other Software stuff to know about:
screen
ssh
ipython
matplotlib
Reading lists for new LISA students(转)的更多相关文章
- Reading Lists
* Non-academic 1. Slowing Down to the Speed of Life, by Richard Carlson and Joseph Bailey.2. Your Mo ...
- deep learning 的综述
从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...
- 深度学习阅读列表 Deep Learning Reading List
Reading List List of reading lists and survey papers: Books Deep Learning, Yoshua Bengio, Ian Goodfe ...
- Reading With Purpose: A grand experiment
Reading With Purpose: A grand experiment This is the preface to a set of notes I'm writing for a sem ...
- Deep Learning 和 Knowledge Graph howto
领军大家: Geoffrey E. Hinton http://www.cs.toronto.edu/~hinton/ 阅读列表: reading lists and survey papers fo ...
- Courses on Turbulence
Courses on Turbulence Table of Contents 1. Lecture 1.1. UIUC Renewable energy and turbulent environm ...
- The Ph.D. Grind
The Ph.D. Grind A Ph.D. Student Memoir Summary The Ph.D. Grind, a 122-page e-book, is the first know ...
- QuantStart量化交易文集
Over the last seven years more than 200 quantitative finance articles have been written by members o ...
- Teen Readers【青少年读者】
Teen Readers Teens and younger children are reading a lot less for fun, according to a Common Sense ...
随机推荐
- Anaconda+django写出第一个web app(五)
今天开始学习网页风格和设计,就像python有Web框架一样,也有一些CSS框架.对于CSS框架,我们可以使用默认的样式,也可以在原基础上编辑修改.本教程使用的是materialize这个CSS框架[ ...
- python进阶之类常用魔法方法和魔法属性
前言 前面我们总结过了python的关键字.运算符.内置函数.语法糖等与python魔法方法之间的关系,现在我们更细一点,看看python的面向对象编程有哪些常用的魔法属性和魔法方法. 魔法属性 对于 ...
- MongoDB(3.6.3)的用户认证初识
Windows 10家庭中文版,MongoDB 3.6.3, 前言 刚刚安装好了MongoDB,启动了服务器-mongod命令,启动了MongoDB shell-mongo命令,不过,全程都没有使用u ...
- JAVA汉字转拼音(取首字母大写)
import net.sourceforge.pinyin4j.PinyinHelper;import net.sourceforge.pinyin4j.format.HanyuPinyinCaseT ...
- Python的set集合详解
Python 还包含了一个数据类型 -- set (集合).集合是一个无序不重复元素的集.基本功能包括关系测试和消除重复元素.集合对象还支持 union(联合),intersection(交),dif ...
- fsevents npm install是报错
npm install 安装插件的时候,fsevents报错,这是node 8.x版本的问题,解决办法,把node 版本切换到6.x
- L1和L2特征的适用场景
How to decide which regularization (L1 or L2) to use? Is there collinearity among some features? L2 ...
- 两行代码搞定js对象深浅拷贝
有一段时间没有更新博客了,忙于工作.2018年刚过去,今天来开启2018第一篇博文.好了,咱们步入正题. 先上代码 /** * 遍历对象 * 1.判断是不是原始值 * 2.判断是数组还是对象 * 3. ...
- 字体格式类型(.eot/.otf/.woff/.svg)
@font-face语句是css中的一个功能模块,用于实现网页字体多样性的模块(设计者可随意指定字体,不需要考虑浏览者电脑上是否安装). @font-face文件 而由于网页中使用的字体类型,也是各浏 ...
- thinkphp5 url传参
url('index/blog/read',['id'=>5,'name'=>'thinkphp']); 手册https://www.kancloud.cn/manual/thinkphp ...