Reading lists for new LISA students(转)
Research in General
Basics of machine learning
Basics of deep learning
Practical recommendations for gradient-based training of deep architectures
Quick’n’dirty introduction to deep learning: Advances in Deep Learning
Contractive auto-encoders: Explicit invariance during feature extraction
An Analysis of Single Layer Networks in Unsupervised Feature Learning
The importance of Encoding Versus Training With Sparse Coding and Vector Quantization
Feedforward nets
“Improving Neural Nets with Dropout” by Nitish Srivastava
“What is the best multi-stage architecture for object recognition?”
MCMC
Radford Neal’s Review Paper (old but still very comprehensive)
Restricted Boltzmann Machines
Unsupervised learning of distributions of binary vectors using 2-layer networks
Training restricted Boltzmann machines using approximations to the likelihood gradient
Tempered Markov Chain Monte Carlo for training of Restricted Boltzmann Machine
Enhanced Gradient for Training Restricted Boltzmann Machines
Using fast weights to improve persistent contrastive divergence
Training Products of Experts by Minimizing Contrastive Divergence
Boltzmann Machines
Deep Boltzmann Machines (Salakhutdinov & Hinton)
A Two-stage Pretraining Algorithm for Deep Boltzmann Machines
Regularized Auto-Encoders
Regularization
Stochastic Nets & GSNs
Others
Slow, Decorrelated Features for Pretraining Complex Cell-like Networks
What Regularized Auto-Encoders Learn from the Data Generating Distribution
Recurrent Nets
Learning long-term dependencies with gradient descent is difficult
Learning recurrent neural networks with Hessian-free optimization
On the importance of momentum and initialization in deep learning,
Long short-term memory (Hochreiter & Schmidhuber)
Long Short-Term Memory in Echo State Networks: Details of a Simulation Study
The "echo state" approach to analysing and training recurrent neural networks
Backpropagation-Decorrelation: online recurrent learning with O(N) complexity
New results on recurrent network training:Unifying the algorithms and accelerating convergence
Convolutional Nets
ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, NIPS 2012.
Optimization issues with DL
Knowledge Matters: Importance of Prior Information for Optimization
Practical recommendations for gradient-based training of deep architectures
Hessian Free
Natural Gradient (TONGA)
NLP + DL
Distributed Representations of Words and Phrases and their Compositionality
Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection
CV+RBM
CV + DL
Scaling Up
DL + Reinforcement learning
Graphical Models Background
An Introduction to Graphical Models (Mike Jordan, brief course notes)
A View of the EM Algorithm that Justifies Incremental, Sparse and Other Variants (Neal & Hinton, important paper to the modern understanding of Expectation-Maximization)
A Unifying Review of Linear Gaussian Models (Roweis & Ghahramani, ties together PCA, factor analysis, hidden Markov models, Gaussian mixtures, k-means, linear dynamical systems)
An Introduction to Variational Methods for Graphical Models (Jordan et al, mean-field, etc.)
Writing
Software documentation
Python, Theano, Pylearn2, Linux (bash) (at least the 5 first sections), git (5 first sections), github/contributing to it (Theano doc), vim tutorial or emacs tutorial
Software lists of built-in commands/functions
Other Software stuff to know about:
screen
ssh
ipython
matplotlib
Reading lists for new LISA students(转)的更多相关文章
- Reading Lists
* Non-academic 1. Slowing Down to the Speed of Life, by Richard Carlson and Joseph Bailey.2. Your Mo ...
- deep learning 的综述
从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...
- 深度学习阅读列表 Deep Learning Reading List
Reading List List of reading lists and survey papers: Books Deep Learning, Yoshua Bengio, Ian Goodfe ...
- Reading With Purpose: A grand experiment
Reading With Purpose: A grand experiment This is the preface to a set of notes I'm writing for a sem ...
- Deep Learning 和 Knowledge Graph howto
领军大家: Geoffrey E. Hinton http://www.cs.toronto.edu/~hinton/ 阅读列表: reading lists and survey papers fo ...
- Courses on Turbulence
Courses on Turbulence Table of Contents 1. Lecture 1.1. UIUC Renewable energy and turbulent environm ...
- The Ph.D. Grind
The Ph.D. Grind A Ph.D. Student Memoir Summary The Ph.D. Grind, a 122-page e-book, is the first know ...
- QuantStart量化交易文集
Over the last seven years more than 200 quantitative finance articles have been written by members o ...
- Teen Readers【青少年读者】
Teen Readers Teens and younger children are reading a lot less for fun, according to a Common Sense ...
随机推荐
- 【leetcode 简单】 第一百一十一题 可怜的小猪
有1000只水桶,其中有且只有一桶装的含有毒药,其余装的都是水.它们从外观看起来都一样.如果小猪喝了毒药,它会在15分钟内死去. 问题来了,如果需要你在一小时内,弄清楚哪只水桶含有毒药,你最少需要多少 ...
- rsync同步文件(多台机器同步代码...)
常用组合 rsync -av --delete-after --exclude-from="a.txt" x/x -e ssh x:/x/x a.txt 制定忽略的文件, ...
- spfa+差分约束系统(C - House Man HDU - 3440 )+对差分约束系统的初步理解
题目链接:https://cn.vjudge.net/contest/276233#problem/C 题目大意:有n层楼,给你每个楼的高度,和这个人单次的最大跳跃距离m,两个楼之间的距离最小是1,但 ...
- 2016.6.17——Valid Parentheses
Valid Parentheses 本题收获: 1.stack的使用 2.string和char的区别 题目: Given a string containing just the character ...
- SQl 跨服务器查询脚本示例
1.采用OPENDATASOURCE select top 10 *from OPENDATASOURCE('SQLOLEDB','Data Source=IP地址;User ID=连接用户名称;Pa ...
- Percona XtraBackup 实现全备&增量备份与恢复【转】
percona-xtrabackup主要是有两个工具,其中一个是xtrabackup,一个是innobackupex,后者是前者封装后的一个脚本.在针对MySQL的物理备份工具中,大概是最流行也是最强 ...
- MySQL 高可用:mysql+Lvs+Keepalived 负载均衡及故障转移
系统信息: mysql主库 mysql从库 VIP 192.168.1.150 mysql 主主同步都设置 auto-increment-offset,auto-increment-increment ...
- ASP.NET MVC 5使用Filter过滤Action参数防止sql注入,让你代码安全简洁
在开发程序的过程中,稍微不注意就会隐含有sql注入的危险.今天我就来说下,ASP.NET mvc 5使用Filter过滤Action参数防止sql注入,让你代码安全简洁.不用每下地方对参数的值都进行检 ...
- pycharm tornado 项目 配置
ycharm 配置tornado项目 使得能够像django项目一样运行
- 数据库-mysql数据操作
一:mysql 数据的插入 语法 以下为向MySQL数据表插入数据通用的 INSERT INTO SQL语法: INSERT INTO table_name ( field1, field2,...f ...