(最大矩阵链乘)Matrix-chain product
Matrix-chain product. The following are some instances.
a) <3, 5, 2, 1,10>
b) <2, 7, 3, 6, 10>
c) <10, 3, 15, 12, 7, 2>
d) <7, 2, 4, 15, 20, 5>
矩阵链乘积:
应用动态规划方法:
- 1.刻画一个最优解的结构特征
- 2.递归地定义最优解的值
- 3.计算最优解的值,采用自底向上的方法
- 4.利用计算出的信息构造一个最优解
思想:
1.最优括号化方案的结构特征
用记号A[i..j]表示乘积A[i]A[i+1]..A[j]求值的结果,其中i <=j 。
假设A[i]A[i+1]...A[j]的一个最优解括号把乘积在A[k]和A[k+1]之间分开,则对A[i]A[i+1]...A[j]最优解括号化方案中的“前缀”子链A[i]A[i+1]...A[k]的最优括号化的方法,必须是A[i]A[i+1]...A[k]的一个最有解括号化方案,类似的,A[k+1]A[k+2]…A[j]同理。
2.设m[i][j]为计算矩阵A[i..j]所需的标量乘法运算次数的最小值;
对整个问题,计算A[1..n]的最小代价就是m[1][n]。
假设最优加全部括号将乘积A[i]A[i+1]...A[j]从A[k]和A[k+1]之间分开,i <= k < j。
则:m[i][j] = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j]
关于对乘积A[i]A[i+1]...A[j]加全部括号的最小代价的递归定义为:
m[i][j] = 0 if i == j
m[i][j] = min(i<=k<j){m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j]} s[i][j]=k if i < j
用s[i][j]记录最优值m[i][j]的对应的分割点。
3.用迭代自底向上的表格法来计算最优代价。
4.利用保存在表格s[n][n]内的、经过计算的信息来构造一个最优解。
按最优方式计算A[1..n]时,最终矩阵相乘次序是A[1..s[1][n]]A[a[1][n]+1..n]。
之前的乘法可以递归地进行。
public class Q1_Matrix_chain {
public static int[] atest ={30,35,15,5,10,20,25};
public static int[] a={3, 5, 2, 1, 10};
public static int[] b={2, 7, 3, 6, 10};
public static int[] c={10, 3, 15, 12, 7, 2};
public static int[] d={7, 2, 4, 15, 20, 5};
public static void main(String[] args)
{
System.out.println("<3, 5, 2, 1,10>");
Matrix_Chain_Order(a);
System.out.println("<2, 7, 3, 6, 10>");
Matrix_Chain_Order(b);
System.out.println("<10, 3, 15, 12, 7, 2>");
Matrix_Chain_Order(c);
System.out.println("<7, 2, 4, 15, 20, 5>");
Matrix_Chain_Order(d); } public static void Matrix_Chain_Order(int[] a){
int n = a.length-1;
int[][] m = new int[n+1][n+1];
int[][] s = new int[n+1][n+1];
int i,j,k,t; for (i=0;i<=n;i++)
m[i][i] = 0;
for (i=0;i<=n;i++)
s[i][i] = 0;
for(t=2; t<=n; t++) //t is the chain length
{
for(i=1;i<=n-t+1;i++)//从第一矩阵开始计算,计算长度为t的最小代价
{
j = i+t-1;//长度为t时候的最后一个元素
m[i][j] = 1000000;//初始化为最大代价
for(k=i;k<=j-1;k++)//寻找最优的k值,使得分成两部分k在i与j-1之间
{
int temp = m[i][k]+m[k+1][j] + a[i-1]*a[k]*a[j];
if(temp < m[i][j])
{
m[i][j] = temp; //记录下当前的最小代价
s[i][j] = k; //记录当前的括号位置,即矩阵的编号
}
}
}
}
System.out.println("一个最优解为:");
Display(s,1,n);
System.out.println("\n计算的次数为:");
System.out.println(m[1][n]);
}
public static void Display(int[][] s,int i,int j)
{
if( i == j)
{
System.out.print('A');
System.out.print(i);
}
else
{
System.out.print('(');
Display(s,i,s[i][j]);
Display(s,s[i][j]+1,j);
System.out.print(')');
} } }
(最大矩阵链乘)Matrix-chain product的更多相关文章
- UVA442 矩阵链乘 Matrix Chain Multiplication
题意: 这道题也是在不改变原序列每个元素位置的前提下,看每个元素与他身边的两个元素那个先结合能得到最大的能量 题解: 很明显这是一道区间dp的题目,这道题要断环成链,这道题需要考虑在这个区间上某个元素 ...
- UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)
意甲冠军 由于矩阵乘法计算链表达的数量,需要的计算 后的电流等于行的矩阵的矩阵的列数 他们乘足够的人才 非法输出error 输入是严格合法的 即使仅仅有两个相乘也会用括号括起来 并且括号中 ...
- UVa442 Matrix Chain Multiplication
// UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...
- 【UVa-442】矩阵链乘——简单栈练习
题目描述: 输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.如果乘法无法进行,输出error. Sample Input 9 A 50 10 B 10 20 C 20 5 D 30 35 E ...
- COJ 0016 20603矩阵链乘
传送门:http://oj.cnuschool.org.cn/oj/home/solution.htm?solutionID=35454 20603矩阵链乘 难度级别:B: 运行时间限制:1000ms ...
- Algorithm --> 矩阵链乘法
动态规划--矩阵链乘法 1.矩阵乘法 Note:只有当矩阵A的列数与矩阵B的行数相等时A×B才有意义.一个m×r的矩阵A左乘一个r×n的矩阵B,会得到一个m×n的矩阵C. #include ...
- Matrix Chain Multiplication (堆栈)
题目链接:https://vjudge.net/problem/UVA-442 题目大意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.如果乘法无法进行,输出error. 假定A是m*n的矩 ...
- UVA——442 Matrix Chain Multiplication
442 Matrix Chain MultiplicationSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C ...
- ACM学习历程——UVA442 Matrix Chain Multiplication(栈)
Description Matrix Chain Multiplication Matrix Chain Multiplication Suppose you have to evaluate ...
随机推荐
- npm安装socket.io时报错的解决方法(npm WARN enoent ENOENT: no such file or directory, open '/usr/local/nodejs/bin/package.json')
执行 npm install socket.io安装时报错: [root@WEB node_modules]# npm install socket.ionpm WARN enoent ENOENT: ...
- array_merge 优化调整
function dealed_array_merge($a,$b){ if ($a && !$b){ return $a; } if (!$a && $b){ ret ...
- nltk_29_pickle保存和导入分类器
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&am ...
- Java基础-StringBuffer类与StringBuilder类简介
Java基础-StringBuffer类与StringBuilder类简介 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.StringBuffer类 在学习过String类之后 ...
- Linux入门,这七大习惯得有!
对于很多Linux初学者来说,在刚开始使用Linux系统时会感到很多不适.这里为大家整理了自己以前Linux入门时别人告诉我的七个习惯.我相信如果你运用了这七个习惯,在你使用Linux时你会感觉更安全 ...
- MySQL报错】ERROR 1558 (HY000): Column count of mysql.user is wrong. Expected 43, found 39.
之前在centos6.4系统安装的是自带的mysql 5.1版本,后来升级到了5.6版本,执行以下命令报错 在网上查找原因说说因为升级不当导致,执行以下命令即可正常执行命令 mysql_upgrade ...
- [译]Quartz.NET 框架 教程(中文版)2.2.x 之第五课 SimpleTrigger
第五课 SimpleTrigger 如果你需要在一个指定时间段内执行一次作业任务或是在指定的时间间隔内多次执行作业任务,SimpleTrigger应该能满足你的调度需求.例如,你希望触发器在2015年 ...
- Bzoj4763 雪辉
Time Limit: 39 Sec Memory Limit: 666 MBSubmit: 151 Solved: 80 Description 上次立下的NOIP退役Flag没有成功 这次 ...
- 【总结】2017年当下最值得你关注的前端开发框架,不知道你就OUT了!
近几年随着 jQuery.Ext 以及 CSS3 的发展,以 Bootstrap 为代表的前端开发框架如雨后春笋般挤入视野,可谓应接不暇. 在这篇分享中,我将总结2017年当下最值得你关注的前端开发框 ...
- Remove K Digits
Given string A representative a positive integer which has N digits, remove any k digits of the numb ...