Matrix-chain product. The following are some instances.

a)       <3, 5, 2, 1,10>

b)       <2, 7, 3, 6, 10>

c)       <10, 3, 15, 12, 7, 2>

d)       <7, 2, 4, 15, 20, 5>

矩阵链乘积:

应用动态规划方法:

  • 1.刻画一个最优解的结构特征
  • 2.递归地定义最优解的值
  • 3.计算最优解的值,采用自底向上的方法
  • 4.利用计算出的信息构造一个最优解

思想:

1.最优括号化方案的结构特征

用记号A[i..j]表示乘积A[i]A[i+1]..A[j]求值的结果,其中i <=j 。

假设A[i]A[i+1]...A[j]的一个最优解括号把乘积在A[k]和A[k+1]之间分开,则对A[i]A[i+1]...A[j]最优解括号化方案中的“前缀”子链A[i]A[i+1]...A[k]的最优括号化的方法,必须是A[i]A[i+1]...A[k]的一个最有解括号化方案,类似的,A[k+1]A[k+2]…A[j]同理。

2.设m[i][j]为计算矩阵A[i..j]所需的标量乘法运算次数的最小值;

对整个问题,计算A[1..n]的最小代价就是m[1][n]。

假设最优加全部括号将乘积A[i]A[i+1]...A[j]从A[k]和A[k+1]之间分开,i <= k < j。

则:m[i][j] = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j]

关于对乘积A[i]A[i+1]...A[j]加全部括号的最小代价的递归定义为:

m[i][j] = 0   if i == j

m[i][j] = min(i<=k<j){m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j]}  s[i][j]=k   if i < j

用s[i][j]记录最优值m[i][j]的对应的分割点。

3.用迭代自底向上的表格法来计算最优代价。

4.利用保存在表格s[n][n]内的、经过计算的信息来构造一个最优解。

按最优方式计算A[1..n]时,最终矩阵相乘次序是A[1..s[1][n]]A[a[1][n]+1..n]。

之前的乘法可以递归地进行。

public class Q1_Matrix_chain {
public static int[] atest ={30,35,15,5,10,20,25};
public static int[] a={3, 5, 2, 1, 10};
public static int[] b={2, 7, 3, 6, 10};
public static int[] c={10, 3, 15, 12, 7, 2};
public static int[] d={7, 2, 4, 15, 20, 5};
public static void main(String[] args)
{
System.out.println("<3, 5, 2, 1,10>");
Matrix_Chain_Order(a);
System.out.println("<2, 7, 3, 6, 10>");
Matrix_Chain_Order(b);
System.out.println("<10, 3, 15, 12, 7, 2>");
Matrix_Chain_Order(c);
System.out.println("<7, 2, 4, 15, 20, 5>");
Matrix_Chain_Order(d); } public static void Matrix_Chain_Order(int[] a){
int n = a.length-1;
int[][] m = new int[n+1][n+1];
int[][] s = new int[n+1][n+1];
int i,j,k,t; for (i=0;i<=n;i++)
m[i][i] = 0;
for (i=0;i<=n;i++)
s[i][i] = 0;
for(t=2; t<=n; t++) //t is the chain length
{
for(i=1;i<=n-t+1;i++)//从第一矩阵开始计算,计算长度为t的最小代价
{
j = i+t-1;//长度为t时候的最后一个元素
m[i][j] = 1000000;//初始化为最大代价
for(k=i;k<=j-1;k++)//寻找最优的k值,使得分成两部分k在i与j-1之间
{
int temp = m[i][k]+m[k+1][j] + a[i-1]*a[k]*a[j];
if(temp < m[i][j])
{
m[i][j] = temp; //记录下当前的最小代价
s[i][j] = k; //记录当前的括号位置,即矩阵的编号
}
}
}
}
System.out.println("一个最优解为:");
Display(s,1,n);
System.out.println("\n计算的次数为:");
System.out.println(m[1][n]);
}
public static void Display(int[][] s,int i,int j)
{
if( i == j)
{
System.out.print('A');
System.out.print(i);
}
else
{
System.out.print('(');
Display(s,i,s[i][j]);
Display(s,s[i][j]+1,j);
System.out.print(')');
} } }

(最大矩阵链乘)Matrix-chain product的更多相关文章

  1. UVA442 矩阵链乘 Matrix Chain Multiplication

    题意: 这道题也是在不改变原序列每个元素位置的前提下,看每个元素与他身边的两个元素那个先结合能得到最大的能量 题解: 很明显这是一道区间dp的题目,这道题要断环成链,这道题需要考虑在这个区间上某个元素 ...

  2. UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)

    意甲冠军  由于矩阵乘法计算链表达的数量,需要的计算  后的电流等于行的矩阵的矩阵的列数  他们乘足够的人才  非法输出error 输入是严格合法的  即使仅仅有两个相乘也会用括号括起来  并且括号中 ...

  3. UVa442 Matrix Chain Multiplication

    // UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...

  4. 【UVa-442】矩阵链乘——简单栈练习

    题目描述: 输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.如果乘法无法进行,输出error. Sample Input 9 A 50 10 B 10 20 C 20 5 D 30 35 E ...

  5. COJ 0016 20603矩阵链乘

    传送门:http://oj.cnuschool.org.cn/oj/home/solution.htm?solutionID=35454 20603矩阵链乘 难度级别:B: 运行时间限制:1000ms ...

  6. Algorithm --> 矩阵链乘法

    动态规划--矩阵链乘法 1.矩阵乘法       Note:只有当矩阵A的列数与矩阵B的行数相等时A×B才有意义.一个m×r的矩阵A左乘一个r×n的矩阵B,会得到一个m×n的矩阵C. #include ...

  7. Matrix Chain Multiplication (堆栈)

    题目链接:https://vjudge.net/problem/UVA-442 题目大意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.如果乘法无法进行,输出error. 假定A是m*n的矩 ...

  8. UVA——442 Matrix Chain Multiplication

    442 Matrix Chain MultiplicationSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C ...

  9. ACM学习历程——UVA442 Matrix Chain Multiplication(栈)

    Description   Matrix Chain Multiplication  Matrix Chain Multiplication  Suppose you have to evaluate ...

随机推荐

  1. laravel 数据库迁移转 sql 语句

    可以使用下面的命令 php artisan migrate --pretend --no-ansi 当然,你需要有可以 migrate 的东西. 数据库迁移导出到文件(使用命令) <?php n ...

  2. Python操作sqlserver 2000

    在网上找到了pyodbc这个模块,本人操作系统是 Ubuntu 16.04 , Python 2.7  已经安装了pip 按照 官方文档 的步骤成功安装. 但是需要跨平台. 使用pyodbc在wind ...

  3. maven添加docker插件无法引入,运行时报错 No plugin found for prefix 'docker'

    maven 安装不上docker插件,运行 提示:docker:bulid时No plugin found for prefix 'docker' 原因是maven不能识别 docker-maven- ...

  4. python学习笔记2-文件操作

    一.文件操作 #文件操作一定要注意文件指针 f=open('','a+,encoding=utf-8) f.seek(0) #文件指针移到行首 f.tell()#查看文件指针的位置 f.read()# ...

  5. Netty接收HTTP文件上传及文件下载

    文件上传 这个处理器的原理是接收HttpObject对象,按照HttpRequest,HttpContent来做处理,文件内容是在HttpContent消息带来的. 然后在HttpContent中一个 ...

  6. Spring AOP注解为什么失效?90%Java程序员不知道

    使用Spring Aop注解的时候,如@Transactional, @Cacheable等注解一般需要在类方法第一个入口的地方加,不然不会生效. 如下面几种场景 1.Controller直接调用Se ...

  7. 鸟哥的书——ubuntu命令

    纯粹按着鸟哥的书上的基本命令打一遍,不喜勿喷! Chapter5.首次登录 一.基础命令: 1.显示时间和日期的命令:date dzhwen@deng:~$ date 2014年 02月 23日 星期 ...

  8. laravel 带条件的分页查询

    laravel 带条件的分页查询, 原文:http://blog.csdn.net/u011020900/article/details/52369094 bug:断点查询,点击分页,查询条件消失. ...

  9. Request爬取网站(seo.chinaz.com)百度权重的查询结果

    一:脚本需求 利用Python3查询网站权重并自动存储在本地数据库(Mysql数据库)中,同时导出一份网站权重查询结果的EXCEL表格 数据库类型:MySql 数据库表单名称:website_weig ...

  10. Python练习-从小就背不下来的99乘法表

    心血来潮,灵机一动,反正就是无聊的做了一个很简单的小玩意: for i in range(1,10):#让i 1-9 循环9次 print("\n")#每循环一次进行一次换行 fo ...