Drainage Ditches

Time Limit: 1000MS Memory Limit: 10000K

Description

Every time it rains on Farmer John’s fields, a pond forms over Bessie’s favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie’s clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.

Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.

Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4

1 2 40

1 4 20

2 4 20

2 3 30

3 4 10

Sample Output

50

Source

USACO 93

一道最大流的板子题,感觉也没什么好说的,建图也比较easy" role="presentation" style="position: relative;">easyeasy,直接套个dinic" role="presentation" style="position: relative;">dinicdinic就行了。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define oo 0x3f3f3f3f
#define N 10005
using namespace std;
struct Node{
    int v,next,c;
}e[N<<1];
int tot=1,n,m,d[N],first[N];
inline void add(int u,int v,int c){
    e[++tot].v=v;
    e[tot].next=first[u];
    e[tot].c=c;
    first[u]=tot;
}
inline long long read(){
    long long ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch)){
        ans=(ans<<3)+(ans<<1)+ch-'0';
        ch=getchar();
    }
    return ans;
}
inline int max(int a,int b){return a>b?a:b;}
inline bool bfs(){
    queue<int>q;
    q.push(1);
    memset(d,-1,sizeof(d));
    d[1]=0;
    while(!q.empty()){
        int x=q.front();
        q.pop();
        for(int i=first[x];i!=-1;i=e[i].next){
            if(d[e[i].v]==-1&&e[i].c){
                d[e[i].v]=d[x]+1;
                if(e[i].v==m)return true;
                q.push(e[i].v);
            }

        }
    }
    return false;
}
inline int dfs(int p,int f){
    if(p==m)return f;
    int cnt=f;
    for(int i=first[p];i!=-1;i=e[i].next){
        int v=e[i].v;
        if(d[v]==d[p]+1&&e[i].c>0&&cnt){
            int maxn=dfs(v,min(cnt,e[i].c));
            if(maxn==0)d[v]=-1;
            cnt-=maxn;
            e[i].c-=maxn;
            e[i^1].c+=maxn;
        }

    }
    return f-cnt;
}
int main(){
    while(scanf("%d%d",&n,&m)!=EOF){
        tot=1;
        memset(first,-1,sizeof(first));
        for(int i=1;i<=n;++i){
            int u=read(),v=read(),w=read();
            add(u,v,w);
            add(v,u,0);
        }
        int ans=0;
        while(bfs())ans+=dfs(1,oo);
        printf("%d\n",ans);
    }

    return 0;
}

2018.07.06 POJ1273 Drainage Ditches(最大流)的更多相关文章

  1. poj-1273 Drainage Ditches(最大流基础题)

    题目链接: Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67475   Accepted ...

  2. POJ-1273 Drainage Ditches 最大流Dinic

    Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 65146 Accepted: 25112 De ...

  3. POJ1273:Drainage Ditches(最大流入门 EK,dinic算法)

    http://poj.org/problem?id=1273 Description Every time it rains on Farmer John's fields, a pond forms ...

  4. poj1273 Drainage Ditches (最大流板子

    网络流一直没学,来学一波网络流. https://vjudge.net/problem/POJ-1273 题意:给定点数,边数,源点,汇点,每条边容量,求最大流. 解法:EK或dinic. EK:每次 ...

  5. [poj1273]Drainage Ditches(最大流)

    解题关键:最大流裸题 #include<cstdio> #include<cstring> #include<algorithm> #include<cstd ...

  6. poj1273 Drainage Ditches Dinic最大流

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 76000   Accepted: 2953 ...

  7. Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )

    题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...

  8. poj1273 Drainage Ditches

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 68414   Accepted: 2648 ...

  9. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

随机推荐

  1. Android 照相

    XE6 控件太强了CameraComponent就可以了 CameraComponent1.Active := True; procedure TCameraComponentForm.CameraC ...

  2. as3 判断鼠标移动方向

    import flash.events.MouseEvent; var odx:Number=mouseX; var ody:Number=mouseY; stage.addEventListener ...

  3. UI5-文档-4.15-Nested Views

    我们的面板内容变得越来越复杂,现在是时候将面板内容移动到一个单独的视图中了.使用这种方法,应用程序结构更容易理解,应用程序的各个部分可以重用. Preview The panel content is ...

  4. c++ vector, 迭代器

    现代c++尽量使用vector(容器)和迭代器(相当于指针),少使用数组和指针,除非对程序执行效率有很高的要求. 容器优点,易于扩展,可通过push_back方法动态添加元素,数组不能动态添加元素. ...

  5. Java 静态代理和动态代理例子

    代理Proxy: Proxy代理模式是一种结构型设计模式,主要解决的问题是:在直接访问对象时带来的问题 代理是一种常用的设计模式,其目的就是为其他对象提供一个代理以控制对某个对象的访问.代理类负责为委 ...

  6. vim nginx配置文件时具备语法高亮功能

    1.下载nginx.vim 下载页面:http://www.vim.org/scripts/script.php?script_id=1886 wget http://www.vim.org/scri ...

  7. ArcGIS 复制要素

    DataManagementTools.General.Copy DataManagementTools.Features.CopyFeatures ConversionTools.ToGeodata ...

  8. 吴裕雄 数据挖掘与分析案例实战(3)——python数值计算工具:Numpy

    # 导入模块,并重命名为npimport numpy as np# 单个列表创建一维数组arr1 = np.array([3,10,8,7,34,11,28,72])print('一维数组:\n',a ...

  9. drupal sql 源码解析query.inc 文件

    query.inc 文件: sql语句: $this->condition($field);1707 line public function condition($field, $value ...

  10. 'org.springframework.beans.factory.xml.XmlBeanFactory' is deprecated

    'org.springframework.beans.factory.xml.XmlBeanFactory' is deprecated XmlBeanFactory这个类已经被摒弃了.可以用以下代替 ...