Drainage Ditches

Time Limit: 1000MS Memory Limit: 10000K

Description

Every time it rains on Farmer John’s fields, a pond forms over Bessie’s favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie’s clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.

Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.

Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4

1 2 40

1 4 20

2 4 20

2 3 30

3 4 10

Sample Output

50

Source

USACO 93

一道最大流的板子题,感觉也没什么好说的,建图也比较easy" role="presentation" style="position: relative;">easyeasy,直接套个dinic" role="presentation" style="position: relative;">dinicdinic就行了。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define oo 0x3f3f3f3f
#define N 10005
using namespace std;
struct Node{
    int v,next,c;
}e[N<<1];
int tot=1,n,m,d[N],first[N];
inline void add(int u,int v,int c){
    e[++tot].v=v;
    e[tot].next=first[u];
    e[tot].c=c;
    first[u]=tot;
}
inline long long read(){
    long long ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch)){
        ans=(ans<<3)+(ans<<1)+ch-'0';
        ch=getchar();
    }
    return ans;
}
inline int max(int a,int b){return a>b?a:b;}
inline bool bfs(){
    queue<int>q;
    q.push(1);
    memset(d,-1,sizeof(d));
    d[1]=0;
    while(!q.empty()){
        int x=q.front();
        q.pop();
        for(int i=first[x];i!=-1;i=e[i].next){
            if(d[e[i].v]==-1&&e[i].c){
                d[e[i].v]=d[x]+1;
                if(e[i].v==m)return true;
                q.push(e[i].v);
            }

        }
    }
    return false;
}
inline int dfs(int p,int f){
    if(p==m)return f;
    int cnt=f;
    for(int i=first[p];i!=-1;i=e[i].next){
        int v=e[i].v;
        if(d[v]==d[p]+1&&e[i].c>0&&cnt){
            int maxn=dfs(v,min(cnt,e[i].c));
            if(maxn==0)d[v]=-1;
            cnt-=maxn;
            e[i].c-=maxn;
            e[i^1].c+=maxn;
        }

    }
    return f-cnt;
}
int main(){
    while(scanf("%d%d",&n,&m)!=EOF){
        tot=1;
        memset(first,-1,sizeof(first));
        for(int i=1;i<=n;++i){
            int u=read(),v=read(),w=read();
            add(u,v,w);
            add(v,u,0);
        }
        int ans=0;
        while(bfs())ans+=dfs(1,oo);
        printf("%d\n",ans);
    }

    return 0;
}

2018.07.06 POJ1273 Drainage Ditches(最大流)的更多相关文章

  1. poj-1273 Drainage Ditches(最大流基础题)

    题目链接: Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67475   Accepted ...

  2. POJ-1273 Drainage Ditches 最大流Dinic

    Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 65146 Accepted: 25112 De ...

  3. POJ1273:Drainage Ditches(最大流入门 EK,dinic算法)

    http://poj.org/problem?id=1273 Description Every time it rains on Farmer John's fields, a pond forms ...

  4. poj1273 Drainage Ditches (最大流板子

    网络流一直没学,来学一波网络流. https://vjudge.net/problem/POJ-1273 题意:给定点数,边数,源点,汇点,每条边容量,求最大流. 解法:EK或dinic. EK:每次 ...

  5. [poj1273]Drainage Ditches(最大流)

    解题关键:最大流裸题 #include<cstdio> #include<cstring> #include<algorithm> #include<cstd ...

  6. poj1273 Drainage Ditches Dinic最大流

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 76000   Accepted: 2953 ...

  7. Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )

    题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...

  8. poj1273 Drainage Ditches

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 68414   Accepted: 2648 ...

  9. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

随机推荐

  1. Jsch - java SFTP 文件上传下载

    使用Jsch上传.下载文件,核心步骤是:获取channel,然后使用get/put方法下载.上传文件 核心代码句: session = jSch.getSession(ftpUserName, ftp ...

  2. SQL 2012 分页取数据

    ,), data int ) select * from t1 row rows only create clustered index t1c on t1(id) declare @i int ) ...

  3. 基于OpenGL编写一个简易的2D渲染框架-12 重构渲染器-BlockAllocator

    BlockAllocator 的内存管理情况可以用下图表示 整体思路是,先分配一大块内存 Chunk,然后将 Chunk 分割成小块 Block.由于 Block 是链表的一个结点,所以可以通过链表的 ...

  4. Python之类属性的增删改查

    #类属性又称为静态变量,或者是静态数据,这些数据是他们所属的类对象绑定的,不依赖于任何类实例 class ChinesePeople: country = 'china' def __init__(s ...

  5. docker问题

    Docker报错 WARNING: IPv4 forwarding is disabled. Networking will not work. 解决办法: # vim /usr/lib/sysctl ...

  6. SO\PR回写的数据如下

    insert into OUT_ORDER_RES ---JAVA FOR PR ) as LGORT ,'SAPRFC' as ERNAM,out_pr.due_datetime,out_pr.so ...

  7. Android自定义实现微信标题栏

    Android自定义实现微信标题栏     前言:在android的开发中有时我们需要更个性化的标题栏,而不仅仅是系统预定义的图标加软件名,同时有时候我们需要在标题栏中实现更多功能,如添加按钮响应用户 ...

  8. discrete

    discrete - 必应词典 美[dɪ'skrit]英[dɪ'skriːt] adj.离散的:分离的:各别的 网络不连续的:分立的:离散型

  9. oracle在centos6.5安装

    说明 很多操作是默认,具体定制另说. 安装 参考http://www.linuxidc.com/Linux/2014-02/97374p4.htm 这篇是上面那篇的整合版:http://www.cnb ...

  10. collections系列之OrderedDict【有序字典】与DefaultDict【默认字典】

    今天来向大家介绍一下collections系列中的OrderedDict和DefaultDict,这两种类均是通过collections来创建的,均是对dict字典加工,所有都继承了dict字典的方法 ...