P2473 [SCOI2008]奖励关

题目描述

你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出\(k\)次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。

宝物一共有\(n\)种,系统每次抛出这\(n\)种宝物的概率都相同且相互独立。也就是说,即使前\(k-1\)次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第\(k\)次抛出各个宝物的概率依然均为\(1/n\)。

获取第\(i\)种宝物将得到\(P_i\)分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合\(S_i\)。只有当\(S_i\)中所有宝物都至少吃过一次,才能吃第\(i\)种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,\(P_i\)可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。

假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

输入输出格式

输入格式:

第一行为两个正整数\(k\)和\(n\),即宝物的数量和种类。以下\(n\)行分别描述一种

宝物,其中第一个整数代表分值,随后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到\(n\)),以0结尾。

输出格式:

输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

说明

\(1<=k<=100, 1<=n<=15\),分值为\([-10^6,10^6]\)内的整数。


想做这个题得先弄懂条件概率

简单一点的解释是,B在A发生的条件下发生的概率。

举个栗子,掷色子第一次投6概率为1/6,为A事件,第二次投6概率仍为1/6,为B事件。如果把两次投掷产生的一个结果算成一个最终状态,那么连续的状态AB发生的概率为1/36,也即是B在A发生的条件下发生的概率。

条件概率一定得把连续的事件划为一个状态来求解

对于具体题目来看,在第\(i\)次出现宝物的时候,我们产生的状态空间的大小即为\(1/n^i\)。对于其中每一个状态空间的延长我们都可以做出选和不选的决策(当然,有时候是强制不能选的),以保证最优策略。

当然,即使没有决策,我们也不能找到所有状态空间进行统计,我们发现,第\(i\)个阶段产生的某一个状态空间对第\(i+1\)个阶段的每一个可能发生的宝物都能产生一个递推,这可能出现的\(n\)个宝物将状态空间扩大了\(n\)倍。

于是我们实际上在统计的时候,对于第\(i\)个阶段宝物产生的状态空间,它在后面重复出现了\(n^{k-i}\)次,所以这一维所有的答案产生的贡献最后需要除上\(n^i\),我们通过倒推来消除可能爆精度的问题(在后面具体提到)

如果进行决策,我们利用背包的思想,将状态空间用一个新的状态表示处理,这也是转移方程中状态压缩的一维\(j\),\(j\)表示当前状态空间每个宝物是否出现。注意新的状态空间可能代表多个以往的状态空间。

按照顺着的思想从前向后递推,我们用新状态空间对当前阶段每一个可能出现的概率进行递推,等价于原状态空间对每一个概率进行递推。这时候会产生两个问题,一是我们对每一个状态空间都得朴素的除上\(n^i\),会产生新的复杂度。二是我们需要额外的判断,保证统计答案时的合法性,比较麻烦。

所以我们进行倒着做,可以对每一次产生的新状态都除以\(n\),而不必对每一个状态特殊判断。最后统计答案时也只有唯一的一个合法。

方程:\(dp[i][j]\)代表第\(i\)阶段\(j\)状态已经发生转移的最大分数。

转移:\(dp[i][j]+=\sum_{l=1}^n max(dp[i+1][j|(1<<l-1)],dp[i+1][j])\),\(max\)左边要判转移合法

目标:\(dp[1][0]\)

可能说得不严谨,大概只是个人的一点浅显的感性理解,今天也是第一次做条件概率的题,如有不足,还请提出。


Code:

#include <cstdio>
const int N=102;
double dp[N][1<<15],score[18];
double max(double x,double y){return x>y?x:y;}
int n,k,pre[18];
void init()
{
scanf("%d%d",&k,&n);
int pree;
for(int i=1;i<=n;i++)
{
scanf("%lf%d",score+i,&pree);
while(pree)
{
pre[i]|=1<<pree-1;
scanf("%d",&pree);
}
}
}
void work()
{
for(int i=k;i;i--)
for(int j=0;j<=1<<n;j++)
{
for(int l=1;l<=n;l++)
{
if((pre[l]&j)==pre[l])
dp[i][j]+=max(dp[i+1][j|(1<<l-1)]+score[l],dp[i+1][j]);
else
dp[i][j]+=dp[i+1][j];
}
dp[i][j]/=double(n);
}
printf("%.6lf",dp[1][0]);
}
int main()
{
init();
work();
return 0;
}

2018.7.3

洛谷 P2473 [SCOI2008]奖励关 解题报告的更多相关文章

  1. 洛谷 P2473 [SCOI2008]奖励关(状压dp+期望)

    题面 luogu 题解 \(n \leq 15\) 状压 \(f[i][S]\)表示第\(i\)轮,吃过的集合为\(S\) 正着转移好像有点复杂 考虑逆推转移(正着转移应该也行) \(f[i][S]\ ...

  2. 洛谷P2473 [SCOI2008]奖励关(期望+状压)

    传送门 我数学期望还是太差了…… 先考虑状压模型,设$dp[i][S]$表示第$i$轮,当前宝物状态为$S$,能获得的最大期望分数 然而这个模型有一个问题,第$i$轮不一定能达到状态$S$ 那么考虑转 ...

  3. 洛谷 P2473 [SCOI2008]奖励关 ( 期望DP )

    题目链接 题意 : 中文题.点链接 分析 : 第一道有关概率期望的DP 有个大部分情况下通用的结论 概率正推.期望反推 原因不明.其实是没有查到较好的解释 这题由于有一些取物品的先决条件在这里 而且观 ...

  4. [BZOJ1076][SCOI2008]奖励关解题报告|状压DP

    你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝 ...

  5. 洛谷2473(SCOI2008)奖励关

    题目:https://www.luogu.org/problemnew/show/P2473 因为可不可选此物与之前选过什么物品有关,所以状态可以记录成前面已经选过什么物品. 因为选不选此物与它带来的 ...

  6. LG P2473 [SCOI2008]奖励关

    题目链接:P2473 [SCOI2008]奖励关 题意:有n个宝物 每次等概率抛出其中之一一共抛出k次每个宝物有一个价值 和一个前提集合只有集齐了集合中的所有宝物 才可以领取这个宝物 范围:1 < ...

  7. P2473 [SCOI2008]奖励关(期望)

    P2473 [SCOI2008]奖励关 $n<=15$,显然的状压 设$f[i][w]$表示前$i$轮,状态$w$的最大期望 蓝后我们发现一个问题:$f[i][w]$可能是非法的 于是我们从$f ...

  8. 洛谷_Cx的故事_解题报告_第四题70

    1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h>   struct node {     long x,y,c; ...

  9. 洛谷 P2317 [HNOI2005]星际贸易 解题报告

    P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...

随机推荐

  1. selenium的基本定位方式总结

    Selenium提供了8种定位方式. id name class name tag name link text partial link text xpath css selector 这8种定位方 ...

  2. Mysql读写分离——主从数据库+Atlas

    mysql集群 最近在参加项目开发微信小程序后台,由于用户数量巨大,且后台程序并不是很完美,所以对用户的体验很是不友好(简单说就是很卡).赶巧最近正在翻阅<大型网站系统与Java中间件实践> ...

  3. React Native移动开发实战-2-如何调试React Native项目

    在实际开发中,还有一个影响开发效率的重要因素:调试. 在1.4.3节中已经介绍了Enable Live Debugger的使用.本节来介绍另一个非常重要的调试选项:Debug JSRemotely选项 ...

  4. 机器人平台框架Yarp - Yet another robot platform

    简介 ROS有强大和易用的特性,用的人很多,目前已经推出2.0版本,有相关的官网和论坛.然而其缺点也比较明显. 只能基于Ubuntu系统,且一个ROS版本只能对应一个具体的Ubuntu版本    通信 ...

  5. AJAX请求中出现OPTIONS请求

    背景 有一个前后端分离的VUE项目来发送ajax请求, 查看Nginx日志或使用Chrome Dev Tools查看请求发送情况时, 会看到每次调后台API的请求之前, 都会发送一个OPTIONS请求 ...

  6. 入门向:南邮CTF_ReadAsm2_WP

    题目链接:http://ctf.nuptzj.cn/challenges#ReadAsm2 我比较菜,所以把思路全部敲上来了. 题目很明确告诉我们,这道题考察阅读汇编代码的能力. 在对编译环境和调用约 ...

  7. RBC:Echo设备2020年可为亚马逊贡献100亿美元收入

    BI 中文站 12 月 22 日报道 加拿大皇家银行资本市场(RBC Capital Markets)分析师马克-马哈尼(Mark Mahaney)表示,亚马逊是首批将智能音箱引进主流受众的公司之一, ...

  8. to_char

    to_date(to_char(to_date(#{conds.currentTime,jdbcType=VARCHAR},'YYYY-MM-DD hh24:mi:ss'),'hh24:mi:ss') ...

  9. java代码生成xml 报错:HIERARCHY_REQUEST_ERR: 尝试在不允许的位置插入节点。

    document.appendChild(controlElement)好像只能append一个根节点

  10. 20172329 2018-2019 《Java软件结构与数据结构》实验三报告

    20172329 2018-2019-2 <Java软件结构与数据结构>实验三报告 课程:<Java软件结构与数据结构> 班级: 1723 姓名: 王文彬 学号:2017232 ...