【BZOJ4804】欧拉心算
Description
给定数字\(n\)(\(n\le 10^7\)),求:
\]
多组数据输入,数据组数\(T\le5000\)。
Solution
简单的一题,直接推导:
\sum_{i=1}^n\sum_{j=1}^n\varphi(\gcd(i,j))&=\sum_{d=1}^n\varphi(d)\sum_{i=1}^{\lfloor \frac n d\rfloor}\sum_{j=1}^{\lfloor \frac n d\rfloor}[\gcd(i,j)==1]\\
&=\sum_{d=1}^n\varphi(d)(2\sum_{i=1}^{\lfloor \frac n d\rfloor}\varphi(i)-1)
\end{aligned}
\]
发现后面一个括号带下取整,直接求出\(\varphi\)的前缀和,数论根号分块即可。
Code
#include <cstdio>
using namespace std;
typedef long long ll;
const int N=10000001;
bool vis[N];
int p[N],pcnt;
ll phi[N];
void sieve(){
phi[1]=1;
for(int i=2;i<N;i++){
if(!vis[i]){
p[++pcnt]=i;
phi[i]=i-1;
}
for(int j=1;j<=pcnt&&i*p[j]<N;j++){
int x=i*p[j];
vis[x]=true;
if(i%p[j]==0){
phi[x]=phi[i]*p[j];
break;
}
phi[x]=phi[i]*(p[j]-1);
}
}
for(int i=2;i<N;i++) phi[i]+=phi[i-1];
}
int main(){
sieve();
int T,n;
ll ans;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
ans=0;
for(int i=1,j;i<=n;i=j+1){
j=n/(n/i);
ans+=(2LL*phi[n/i]-1)*(phi[j]-phi[i-1]);
}
printf("%lld\n",ans);
}
return 0;
}
【BZOJ4804】欧拉心算的更多相关文章
- BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...
- [BZOJ4804]欧拉心算
题面戳我 题意:求 \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(\gcd(i,j))\] 多组数据,\(n\le10^7\). sol SBT 单组数据\(O(\sqrt n ...
- BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)
题意 求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$ $T \leqslant 5000, N \leqslant 10^7$ Sol 延用BZOJ4407的做法 化到最 ...
- bzoj4804: 欧拉心算 欧拉筛
题意:求\(\sum_{i=1}^n\sum_{j=1}^n\phi(gcd(i,j))\) 题解:\(\sum_{i==1}^n\sum_{j=1}^n\sum_{d=1}^n[gcd(i,j)== ...
- 并不对劲的bzoj4804:欧拉心算
题目大意 \(t\)(\(t\leq5000\))组询问,每次询问给出\(n\)(\(n\leq10^7\)),求: \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(gcd(i, ...
- [BZOJ4804]欧拉心算:线性筛+莫比乌斯反演
分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b ...
- 【bzoj4804】欧拉心算 解题报告
[bzoj4804]欧拉心算 Description 给出一个数字\(N\),计算 \[\sum_{i=1}^n\sum_{j=1}^n \varphi(\gcd(i,j))\] Input 第一行为 ...
- 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛
[BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...
- BZOJ_4804_欧拉心算_欧拉函数
BZOJ_4804_欧拉心算_欧拉函数 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N&l ...
- bzoj 4804 欧拉心算 欧拉函数,莫比乌斯
欧拉心算 Time Limit: 15 Sec Memory Limit: 256 MBSubmit: 408 Solved: 244[Submit][Status][Discuss] Descr ...
随机推荐
- Netty源码分析第4章(pipeline)---->第1节: pipeline的创建
Netty源码分析第四章: pipeline 概述: pipeline, 顾名思义, 就是管道的意思, 在netty中, 事件在pipeline中传输, 用户可以中断事件, 添加自己的事件处理逻辑, ...
- go 运行项目
此时运行项目,不能像之前简单的使用go run main.go,因为包main包含main.go和router.go的文件,因此需要运行go run *.go命令编译运行.如果是最终编译二进制项目,则 ...
- unzip/tar命令详解
博客目录总纲首页 原文链接:https://www.cnblogs.com/zdz8207/p/3765604.html Linux下的压缩解压缩命令详解及实例 实例:压缩服务器上当前目录的内容为xx ...
- LeetCode 561. Array Partition I (C++)
题目: Given an array of 2n integers, your task is to group these integers into npairs of integer, say ...
- “Hello World!“”团队第七周召开的第二次会议
今天是我们团队“Hello World!”团队第七周召开的第二次会议.博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.代码 一 ...
- M1阶段的开发过程的一些反思
今天八组队伍都做了项目的展示,和他们相比,我们的团队项目是显得最单薄的了,这里面的原因很多,固然我们团队整体的实力 比较弱,但是我们在M1项目开发过程中的种种错误表现也是导致我们项目失利的重要原因.下 ...
- Spring MVC controller的方法返回值
ModeAndView 可以在构造时确定需要跳转的页面也可以通过setViewName方法来确定需要跳转的页面 String 指定返回页面的视图名称,页面跳转,如果加了@ResponseBody注解, ...
- 团队博客作业Week3 --- 项目选择&&需求疑问
项目选择 经过团队内所有成员一致探讨,我们团队选择完善和改进之学霸系统的第二个子模块,即:网站内容结构定义和数据处理.具体的要求如下:(摘自Xueba系统项目需求) 网站内容结构定义和数据处理(Con ...
- Daily Scrumming* 2015.10.31(Day 12)
一.今明两天任务表 Member Today’s Task Tomorrow’s Task 江昊 学习rails的HTTP控制 继续学习rails等项目工具 杨墨犁 学习semanticUI的用法,配 ...
- ME.kkkK
ME.kkkK 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 50 40 • Estima ...