Description

  

  给定数字\(n\)(\(n\le 10^7\)),求:

\[\sum_{i=1}^n\sum_{j=1}^n\varphi(\gcd(i,j))
\]

​  多组数据输入,数据组数\(T\le5000\)。

  

  

  

Solution

  

​  简单的一题,直接推导:

\[\begin{aligned}
\sum_{i=1}^n\sum_{j=1}^n\varphi(\gcd(i,j))&=\sum_{d=1}^n\varphi(d)\sum_{i=1}^{\lfloor \frac n d\rfloor}\sum_{j=1}^{\lfloor \frac n d\rfloor}[\gcd(i,j)==1]\\
&=\sum_{d=1}^n\varphi(d)(2\sum_{i=1}^{\lfloor \frac n d\rfloor}\varphi(i)-1)
\end{aligned}
\]

​  发现后面一个括号带下取整,直接求出\(\varphi\)的前缀和,数论根号分块即可。

  

  

  

Code

  

#include <cstdio>
using namespace std;
typedef long long ll;
const int N=10000001;
bool vis[N];
int p[N],pcnt;
ll phi[N];
void sieve(){
phi[1]=1;
for(int i=2;i<N;i++){
if(!vis[i]){
p[++pcnt]=i;
phi[i]=i-1;
}
for(int j=1;j<=pcnt&&i*p[j]<N;j++){
int x=i*p[j];
vis[x]=true;
if(i%p[j]==0){
phi[x]=phi[i]*p[j];
break;
}
phi[x]=phi[i]*(p[j]-1);
}
}
for(int i=2;i<N;i++) phi[i]+=phi[i-1];
}
int main(){
sieve();
int T,n;
ll ans;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
ans=0;
for(int i=1,j;i<=n;i=j+1){
j=n/(n/i);
ans+=(2LL*phi[n/i]-1)*(phi[j]-phi[i-1]);
}
printf("%lld\n",ans);
}
return 0;
}

【BZOJ4804】欧拉心算的更多相关文章

  1. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  2. [BZOJ4804]欧拉心算

    题面戳我 题意:求 \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(\gcd(i,j))\] 多组数据,\(n\le10^7\). sol SBT 单组数据\(O(\sqrt n ...

  3. BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)

    题意 求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$ $T \leqslant 5000, N \leqslant 10^7$ Sol 延用BZOJ4407的做法 化到最 ...

  4. bzoj4804: 欧拉心算 欧拉筛

    题意:求\(\sum_{i=1}^n\sum_{j=1}^n\phi(gcd(i,j))\) 题解:\(\sum_{i==1}^n\sum_{j=1}^n\sum_{d=1}^n[gcd(i,j)== ...

  5. 并不对劲的bzoj4804:欧拉心算

    题目大意 \(t\)(\(t\leq5000\))组询问,每次询问给出\(n\)(\(n\leq10^7\)),求: \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(gcd(i, ...

  6. [BZOJ4804]欧拉心算:线性筛+莫比乌斯反演

    分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b ...

  7. 【bzoj4804】欧拉心算 解题报告

    [bzoj4804]欧拉心算 Description 给出一个数字\(N\),计算 \[\sum_{i=1}^n\sum_{j=1}^n \varphi(\gcd(i,j))\] Input 第一行为 ...

  8. 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛

    [BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...

  9. BZOJ_4804_欧拉心算_欧拉函数

    BZOJ_4804_欧拉心算_欧拉函数 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N&l ...

  10. bzoj 4804 欧拉心算 欧拉函数,莫比乌斯

    欧拉心算 Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 408  Solved: 244[Submit][Status][Discuss] Descr ...

随机推荐

  1. UGUI实现不规则区域点击响应

    UGUI实现不规则区域点击响应 前言 大家吼啊!最近工作上事情特别多,没怎么打理博客.今天无意打开cnblog才想起该写点东西了.今天给大家讲一个Unity中不规则区域点击响应的实现方法,使用UGUI ...

  2. python多线程创建与使用(转)

    原文:http://codingpy.com/article/python-201-a-tutorial-on-threads/ 创建多线程 创建多线程主要有2种方式. 使用threading.Thr ...

  3. Spring入门学习笔记(2)——基于Java的配置

    目录 基于Java的配置 @Configuration & @Bean Annotations Example 注入Bean依赖 @Import注解 Lifecycle Callbacks(声 ...

  4. python—索引与切片总结

    python中索引与切片的熟练掌握对于字符串的操作很有帮助,梳理如下: (1)索引 S = 'hello world' 1)正向索引 正向索引从0开始,向右依次递增. 2)反向索引 反向索引从-1开始 ...

  5. 爬虫_处理js动态加载

    1.selenium模块下载网页提取url,[煎蛋网] https://www.cnblogs.com/fat39/p/9865949.html#tag5 2.该网页加密了url,通过js获取图片.分 ...

  6. HDU 1556 Color the ball (一维树状数组,区间更新,单点查询)

    中文题,题意就不说了 一开始接触树状数组时,只知道“单点更新,区间求和”的功能,没想到还有“区间更新,单点查询”的作用. 树状数组有两种用途(以一维树状数组举例): 1.单点更新,区间查询(即求和) ...

  7. 作业要求20181204-7 Final阶段第1周/共1周 Scrum立会报告+燃尽图 02

    作业要求参见https://edu.cnblogs.com/campus/nenu/2018fall/homework/2481 版本控制地址https://git.coding.net/lglr20 ...

  8. java第三次实验

    北京电子科技学院(BESTI) 实     验    报     告 课程:Java程序设计   班级:1352       姓名:陈实  学号:20135224 成绩:             指导 ...

  9. 20162314 《Program Design & Data Structures》Learning Summary Of The Seventh Week

    20162314 2017-2018-1 <Program Design & Data Structures>Learning Summary Of The Seventh Wee ...

  10. struts2 中怎样获取HttpServletReqest

    struts2 中怎样获取HttpServletRequest 和HttpServletResponse 提供两种方法 第一种通过调用ServletActionContext这个类源代码中提供这个对象 ...