[CF850F] Rainbow Balls
题目大意
题解
我们枚举最后剩下的球的种类,那么其他球可以看做没用了。
设选定的球有\(a_i\)个,球的总数为\(s=\sum_{i=1}^n a_i\)。
现在问题变为:在一个长度为\(s\)的数轴上,初始在\(a_i\),问在不到达\(0\)的前提下到达\(s\)的期望步数。
设\(p_i\)表示在\(i\)点,向前/后移动一步的概率,有:\(p_i = \frac{i(s-i)}{s(s-1)}\)。
可以列出一个比较显然的式子:
\[f_i = (1-2p_i) f_i + p_i f_{i-1} + p_i f_{i+1} + step_i\]
注意\(step_i = \frac{i}{s}\),为什么?
感性理解一下。
想象你有一张很大的图,有一些节点是终止节点。
现在你要从当前节点向某个后继节点走一步,要算到达任意一个终止节点的期望步数。
由于我们现在选定了一个终止节点。
那么假设走到了\(0\)号点,就相当于走到了去往另一个终止节点的路径。
不妨把这"1"步拆分成若干份,这若干份的和为\(1\),分开计算。
由于走到\(0\)就会走到另一条路径上去,所以每一份不妨设为不走到其它路径上的概率。
所以\(step_i\)为从\(i\)点出发,不走到\(0\)的条件下走到\(s\)的概率。
这是一个经典问题了,很容易得到\(step_i = \frac{i}{s}\)。
树上高消肯定是可以的,然而需要求逆复杂度为\(O((\sum a)logn)\)无法通过此题。
所以我们需要进一步深入。
带入\(step_i = \frac{i}{s}\),稍微变换后有:
\[f_i - f_{i+1} = (f_{i-1}-f_i) +\frac{s-1}{s-i}\]
所以可以得到:\(f_{i}-f_{i+1} = (f_1-f_2) + \sum_{j=2}^{i}\frac{s-1}{s-j}\)
那么有:
\[f_1 = \sum_{i=1}^{s-1} (f_i - f_{i+1}) = (s-1)(f_1-f_2)+\sum_{i=2}^{s-1}\sum_{j=2}^{i} \frac{s-1}{s-j}\]
而\(\sum_{i=2}^{s-1}\sum_{j=2}^{i} \frac{s-1}{s-j} = \sum_{i=2}^{s-1} (s-i) \frac{s-1}{s-i} =(s-2)(s-1)\)。
所以\(f_1 = (s-1)(f_1-f_2) + (s-2)(s-1)\)。
而由于\(f_0\)属于另一条路径,即不存在,故\(f_1 = (1-2p)f_1 +pf_2 + \frac{1}{s}\)。
化简有:\(2f_1 = f_2 + 1\),所以\(f_1 - f_2 = 1 - f_1\)。
所以有:
\[f_1 = (s-1)(1-f_1) +(s-2)(s-1)\]
解得\(f_1 = \frac{(s-1)^2}{s}\),即\(f_1-f_2 = 1-\frac{(s-1)^2}{s}\)
而我们知道\(f_{i}-f_{i+1}\)与\(f_{i-1}-f_i\)之间的关系,所顺次推出所有\(f_i\)即可。
答案\(ans = \sum_{i=1}^n f_{a_i}\),复杂度\(O(max(a)logn)\)。
[CF850F] Rainbow Balls的更多相关文章
- CF850F Rainbow Balls 题解
考虑最后变成哪一种颜色. 设 \(s = \sum\limits_{i=1}^n a_i\) 设现在有 \(k\) 种当前颜色, 需要全部变成该种颜色, 期望步数为 \(f_k\). 考虑状态转移.设 ...
- Codeforces554 C Kyoya and Colored Balls
C. Kyoya and Colored Balls Time Limit: 2000ms Memory Limit: 262144KB 64-bit integer IO format: %I64d ...
- 13 Balls Problem
今天讨论的是称球问题. No.3 13 balls problem You are given 13 balls. The odd ball may be either heavier or ligh ...
- Dapper学习 - Dapper.Rainbow(三) - Read
前面已经介绍了新增/修改/删除了, 接下来介绍一下Rainbow的Read方法. 一.Read -- Rainbow原生 1. 先看测试代码 var conStr = ConfigurationMan ...
- Dapper学习 - Dapper.Rainbow(二) - Update/Delete
上一篇介绍了Rainbow的Create方法, 这里就来介绍一下Update方法吧, 毕竟新增和修改是双胞兄弟嘛. 一.Update 1. 测试代码: var conStr = Configurati ...
- Dapper学习 - Dapper.Rainbow(一) - Create
Dapper这个ORM有许多扩展, 我自己用过两种, 也算是比较主流的两种, Rainbow和Extension, 这里就先介绍下Rainbow吧, 毕竟这个先用, 当然, 由于我使用的是mysql数 ...
- Angular中使用Rainbow
在使用js类库和框架的时候,大家都习惯于编写自己的使用示例,如果能将示例中的html,js和css 进行展示, 并进行高亮显示,效果会很棒,例如在html高亮显示jquery代码 上面的示例是使用ra ...
- Open judge C16H:Magical Balls 快速幂+逆元
C16H:Magical Balls 总时间限制: 1000ms 内存限制: 262144kB 描述 Wenwen has a magical ball. When put on an infin ...
- hduoj 4710 Balls Rearrangement 2013 ACM/ICPC Asia Regional Online —— Warmup
http://acm.hdu.edu.cn/showproblem.php?pid=4710 Balls Rearrangement Time Limit: 6000/3000 MS (Java/Ot ...
随机推荐
- Kubernetes 容器平台实战
一.什么是Kubernetes? Kubernetes是容器集群管理系统,是一个开源的平台,可以实现容器集群的自动化部署,自动扩缩容,维护等功能. 通过Kubernetes可以做到: 快速部署应用 快 ...
- Linux系统初探过程总结
Linux系统初探的过程大约用了一周的时间,这周基本将Linux系统安装,PostgreSQL安装,Nginx服务器安装,ASP.NET Core应用部署都走了一遍.由于以前没有怎么接触和使用过Lin ...
- hover时显示可跟随鼠标移动的浮动框,运用函数节流与去抖进行优化
在很多笔试面试题中总能看到js函数去抖和函数节流,看过很多关于这两者的讨论,最近终于在一个需求中使用了函数去抖(debounce)和函数节流(throttle). 需要完成的效果是,鼠标在表格的单元格 ...
- 2018.4.23 linux系统
linux: 1.代表linux的内核 2.代表linux的操作系统:linux的内核和工具软件.应用软件..办公工具.开发工具. 它的特点: 1.它是开源软件,时当今最成功的开源软件之一.所以很多的 ...
- docker server gave HTTP response to HTTPS client 问题处理办法
vi /etc/docker/daemon.json [root@localhost ~]# cat /etc/docker/daemon.json {"insecure-registrie ...
- 比较语义分割的几种结构:FCN,UNET,SegNet,PSPNet和Deeplab
简介 语义分割:给图像的每个像素点标注类别.通常认为这个类别与邻近像素类别有关,同时也和这个像素点归属的整体类别有关.利用图像分类的网络结构,可以利用不同层次的特征向量来满足判定需求.现有算法的主要区 ...
- ef5 数据库操作
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- Tomcat分析
最近闲来无事,总结了一下tomcat的一些知识,分享出来供大家参考,如有错误,请及时与我联系. 1. 入门示例:虚拟主机提供web服务 该示例通过设置虚拟主机来提供web服务,因为是入门示例,所以设置 ...
- vi/vim命令详解
基础命令学习目录首页 原文链接:https://www.cnblogs.com/mondol/p/vi-examples.html 进入vi vi filename # 打开或新建文件,并将光标置于第 ...
- Final发布 -----欢迎来怼团队
欢迎来怼项目小组—Final发布展示 一.小组成员 队长:田继平 成员:葛美义,王伟东,姜珊,邵朔,阚博文 ,李圆圆 二.文案+美工展示 链接:http://www.cnblogs.com/js201 ...