在跨年的晚上玩手机被妈妈骂了赶来写题……呜呜呜……但是A题了还是很开心啦,起码没有把去年的题目留到明年去做ヾ(◍°∇°◍)ノ゙也祝大家2019快乐!

  这题显然的 kth min-max 容斥就不说了,不会的还是百度吧……记录一下后面的 dp。感觉挺强强的,%题解……

  首先,min - max 容斥的公式为 : \(max_{K}(S) = \sum_{T\subseteq S}(-1)^{|T|-K}\binom{|T|-1}{K-1}min(T)\)

  但是最后面的 \(min(T)\) 显然不能 \(2 ^ {n}\) 枚举,但又是非线性的求和。所以我们需要一点不一样的dp……考虑到 \(n - K <= 10\),实际上也就是说在上面公式中出现的 \(\binom{|T| - 1}{K - 1}\) 中的 \(K - 1\) 最大不会超过 11。从这个地方入手,设 在前 \(x\) 个元素组成的集合中, \(g_{x, i, j}\) 为所有 \(min(T) = j\) 且 \(|T| = i\) 的子集的方案数,

而\(f_{x, j, k} = \sum_{i = 1}(-1)^{i - k}\binom{i - 1}{k - 1}*g_{x, i, j}\)

考虑向集合中加入第 \(i\) 个元素,不加入的直接继承上一次的。

加入的则需要分析一下(下面的就只讨论包含第 \(i\) 个元素的情况)

考虑从 \(f_{x - 1, j - v, k - 1}\) 转移过来(\(v\) 为 \(p[i]\))

分析:\(f_{x - 1, j - v, k - 1} = \sum_{i = 1}(-1)^{i - k + 1}\binom{i - 1}{k - 2}*g_{x - 1, i, j - v}\)

为了便于观察,我们尽量把 \(f_{x, j, k}\) 也写成一样的形式

\(f_{x, j, k} = \sum_{i = 1}(-1)^{i - k + 1}\binom{i}{k - 1}*g_{x - 1, i, j - v}\)

因为我们有 \(\binom{n}{m} = \binom{n - 1}{m}+\binom{n - 1}{m - 1}\)

所以 \(f_{x, j, k} - f_{x - 1, j- v, k - 1} = \sum_{i = 1}(-1)^{i - k + 1}\binom{i - 1}{k - 1}*g_{x, i, j - v} = -f_{x - 1, j - v, k}\)

所以,完整的式子是:

\(f_{x, j, k} = f_{x - 1, j, k} + f_{x - 1, j - v, k - 1} - f_{x - 1, j - v, k}\)

  这样就可以愉快地递推啦。不过还有一个小小的细节,就是边界的问题。我们只需要每次保存 \(f_{x, 0, 0} = 1\) 即可,因为会从 \(0\) 转移出去的当且仅当 \(v = j\) 即集合中仅有一个元素时。此时显然有 \(f_{x, p[x], 1} = 1\)。

#include <bits/stdc++.h>
using namespace std;
#define maxn 2005
#define maxm 20000
#define mod 998244353
#define int long long
int n, K, m, f[][maxm][];
int ans, now, pre, p[maxn];
int inv[maxm], finv[maxm], fac[maxm]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void Up(int &x, int y) { x = (x + y) % mod; if(x < ) x += mod; }
void init()
{
fac[] = , inv[] = inv[] = ; finv[] = ;
for(int i = ; i < maxm; i ++) fac[i] = fac[i - ] * i % mod;
for(int i = ; i < maxm; i ++) inv[i] = (mod - mod / i) * inv[mod % i] % mod;
for(int i = ; i < maxm; i ++) finv[i] = finv[i - ] * inv[i] % mod;
} int C(int n, int m)
{
if(n < m || n < || m < ) return ;
return fac[n] * finv[m] % mod * finv[n - m] % mod;
} int Qpow(int x, int timer)
{
int base = ;
for(; timer; timer >>= , x = x * x % mod)
if(timer & ) base = base * x % mod;
return base;
} void DP()
{
now = , pre = ; f[pre][][] = ;
for(int i = ; i <= n; i ++, swap(now, pre), f[pre][][] = )
for(int j = ; j <= m; j ++)
for(int k = ; k <= K; k ++)
{
f[now][j][k] = f[pre][j][k];
if(j < p[i]) continue;
Up(f[now][j][k], f[pre][j - p[i]][k - ]);
Up(f[now][j][k], -f[pre][j - p[i]][k]);
}
} signed main()
{
n = read(), K = read(), m = read(); init();
for(int i = ; i <= n; i ++) p[i] = read();
K = n - K + ; DP();
for(int i = ; i <= m; i ++)
Up(ans, f[pre][i][K] * m % mod * inv[i] % mod);
printf("%lld\n", ans);
return ;
}

【题解】洛谷P4707重返现世的更多相关文章

  1. 洛谷 P4707 重返现世

    洛谷 P4707 重返现世 k-minimax容斥 有这一个式子:\(E(\max_k(S))=\sum_{T\subseteq S}(-1)^{|T|-k}C_{|T|-1}^{k-1}\min(T ...

  2. 洛谷P4707 重返现世(扩展MinMax容斥+dp)

    传送门 我永远讨厌\(dp.jpg\) 前置姿势 扩展\(Min-Max\)容斥 题解 看纳尔博客去→_→ 咱现在还没搞懂为啥初值要设为\(-1\)-- //minamoto #include< ...

  3. [洛谷P4707] 重返现世

    Description 为了打开返回现世的大门,\(Yopilla\) 需要制作开启大门的钥匙.\(Yopilla\) 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始 ...

  4. 洛谷P4707 重返现世 [DP,min-max容斥]

    传送门 前置知识 做这题前,您需要认识这个式子: \[ kthmax(S)=\sum_{\varnothing\neq T\subseteq S}{|T|-1\choose k-1} (-1)^{|T ...

  5. 洛谷 P4707 - 重返现世(扩展 Min-Max 容斥+背包)

    题面传送门 首先看到这种求形如 \(E(\max(T))\) 的期望题,可以套路地想到 Min-Max 容斥 \(\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T| ...

  6. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  7. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  8. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  9. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

随机推荐

  1. apache-日志-记录post数据

    apache access.log日志只能打印出相关的头部信息,例如:Referer, User-agent.但是我希望看到body中的data. 目前找到解决方案是使用apache的扩展module ...

  2. SNMP TRAP报文解析

    转载地址: https://blog.csdn.net/eric_sunah/article/details/19557683 SNMP的报文格式 SNMP代理和管理站通过SNMP协议中的标准消息进行 ...

  3. 2.4 Oracle之DCL的SQL语句之用户权限以及三大范式

    DCL   (Data Control Language,数据库控制语言)用于定义数据库权限 一.用户权限 1.1  建立用户以及授权: Eg :CREATE USER 用户名  IDENTIFIED ...

  4. shell中中括号的使用

    原文出处:https://www.jianshu.com/p/855c9fb373ff Shell 里面的方括号(包括单中括号与双中括号)可用于以下三种情况的判断: 算术比较. 比如一个变量是否为0, ...

  5. python-gevent模块(自动切换io的协程)

    2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 import gevent     def foo() ...

  6. 绝对干货!初学者也能看懂的DPDK解析

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由Willko发表于云+社区专栏 一.网络IO的处境和趋势 从我们用户的使用就可以感受到网速一直在提升,而网络技术的发展也从1GE/10 ...

  7. Java中的==符号与equals()的使用(测试两个变量是否相等)

    Java 程序中测试两个变量是否相等有两种方式:一种是利用 == 运算符,另一种是利用equals()方法. 当使用 == 来判断两个变量是否相等时,如果两个变量是基本类型变量,且都是数值类型(不一定 ...

  8. Oracle VM VirtualBox 无法卸载 更新 和修复

    好久没更新Oracle VM VirtualBox 突然发现不能更新了 提示要某个msi文件,回想起来好像是被某个清理垃圾的软件清理掉了. 于是根据提示的版本号网上搜了种子又把安装包下载回来 在命令行 ...

  9. 《Spring 2之站立会议3》

    <Spring 2之站立会议3> 昨天,查找了本机的端口号,并对代码作进一步的了解. 今天,对我们项目的基本框架进行了了解,即主界面和各个分界面的基本架构: 遇到的问题,虽然了解了基本框架 ...

  10. VANET

    VANET知识 VANET与普通网络相比,与IOV的区别: VANET中Greedy Routing:基于距离(GPSR):基于速度和角度:基于道路层(TDR): Repair Strategy:Fa ...