设f[i]为在i放置守卫塔时1~i的最小花费。那么显然f[i]=min(f[j]+(i-j)*(i-j-1)/2)+a[i]。

  显然这是个斜率优化入门题。将不与i、j同时相关的提出,得f[i]=min(f[j]+j*(j+1)/2-ij)+i*(i-1)/2+a[i]。

  套路地,假设j>k且j转移优于k,则f[j]+j*(j+1)/2-ij<f[k]+k*(k+1)/2-ik,(f[j]+j*(j+1)/2-f[k]-k*(k+1)/2)/(j-k)<i。

  维护下凸壳即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 1000010
#define ll long long
int n,a[N],q[N];
ll f[N];
long double calc(int j,int k)
{
return (long double)(f[j]+(1ll*j*(j+)>>)-f[k]-(1ll*k*(k+)>>))/(j-k);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3156.in","r",stdin);
freopen("bzoj3156.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
f[]=;
int head=,tail=;q[]=;
for (int i=;i<=n;i++)
{
while (head<tail&&calc(q[head],q[head+])<i) head++;
f[i]=f[q[head]]+(1ll*q[head]*(q[head]+)>>)-1ll*i*q[head]+(1ll*i*(i-)>>)+a[i];
while (head<tail&&calc(q[tail-],q[tail])>calc(q[tail],i)) tail--;
q[++tail]=i;
}
cout<<f[n];
return ;
}

BZOJ3156 防御准备(动态规划+斜率优化)的更多相关文章

  1. BZOJ3156 防御准备 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8688187.html 题目传送门 - BZOJ3156 题意 长为$n$的序列$A$划分,设某一段为$[i,j] ...

  2. [BZOJ3156]防御准备(斜率优化DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP

  3. 2018.09.29 bzoj3156: 防御准备(斜率优化dp)

    传送门 斜率dp经典题目. 然而算斜率的时候并没有注意到下标的平方会爆int于是咕咕*2. 这道题我用了两个数组来表示状态. f[i]f[i]f[i]表示最后i个位置倒数第i个放木偶的最优值. g[i ...

  4. BZOJ3156: 防御准备 【斜率优化dp】

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 2207  Solved: 933 [Submit][Status][Discu ...

  5. bzoj3156 防御准备(斜率优化)

    Time Limit: 10 Sec  Memory Limit: 512 MB Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Out ...

  6. 【学习笔记】动态规划—斜率优化DP(超详细)

    [学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...

  7. 【BZOJ-3156】防御准备 DP + 斜率优化

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 951  Solved: 446[Submit][Status][Discuss] ...

  8. [bzoj1911][Apio2010特别行动队] (动态规划+斜率优化)

    Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[ ...

  9. [bzoj1597][usaco2008 mar]土地购买 (动态规划+斜率优化)

    Description 农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000, ...

随机推荐

  1. (转载)jquery实现全选、反选、获得所有选中的checkbox

    举了7个不同的checkbox状态,和大家一一分享. 1.全选 $("#btn1").click(function(){ $("input[name='checkbox' ...

  2. 【Unity Shader】(十) ------ UV动画原理及简易实现

    笔者使用的是 Unity 2018.2.0f2 + VS2017,建议读者使用与 Unity 2018 相近的版本,避免一些因为版本不一致而出现的问题. [Unity Shader](三) ----- ...

  3. Siki_Unity_7-4_高自由度沙盘游戏地图生成_MineCraft_Uniblocks插件(可拓展)

    Unity 7-4 高自由度沙盘游戏地图生成 MineCraft (插件Uniblocks) 任务1&2&3&4 素材 && 课程演示 && 课 ...

  4. Eclipse web项目更改项目名称

    1. 右键工程:Refactor->Rename,更改项目名称: 2. 修改项目目录下:.project文件 <?xml version="1.0" encoding= ...

  5. centos7 --ngnix 常用命令:

    配置命令 随服务器启动 # systemctl enable nginx.service 重启 nginx 服务 # systemctl restart nginx.service 停止 nginx ...

  6. systemctl status ssh.service 服务重启出现报错

    Case: ubuntu在从Ubuntu 16.04 LTS 升级到18.04 的时候,执行 do-release-upgrade -d 后,发现ssh无法登陆服务器, Solution: 1.通过s ...

  7. time命令详情

    基础命令学习目录首页 原文链接:https://blog.csdn.net/adaptiver/article/details/6596143?utm_source=blogxgwz3 linux下t ...

  8. 开发简单的IO多路复用web框架

    自制web框架 1.核心IO多路复用部分 # -*- coding:utf-8 -*- import socket import select class Snow(): def __init__(s ...

  9. Java程序设计第四次实验报告

    北京电子科技学院(BESTI) 实     验    报     告 课程:java程序设计 班级:1352  姓名:何伟钦  学号:20135223 成绩:            指导教师:娄嘉鹏 ...

  10. 猫咪记单词——NABCD模型分析

    N ——Need 需求:学习英语是一件非常重要的事.面对各种各样的考试,学习英语,最重要的就是词汇量,背单词是提高词汇量的最直接的方法,但是单纯的背单词太单调.寻找一些合适的,更易于接受的背单词学习英 ...