POJ1430
这个题目初看上去是一个排列组合题,而实际上……也是一个排列组合题。
题目描述是:
Description
{1, 2, 3} U {4}, {1, 2, 4} U {3}, {1, 3, 4} U {2}, {2, 3, 4} U {1}
{1, 2} U {3, 4}, {1, 3} U {2, 4}, {1, 4} U {2, 3}.
There is a recurrence which allows to compute S(n, m) for all m and n.
S(0, 0) = 1; S(n, 0) = 0 for n > 0; S(0, m) = 0 for m > 0;
S(n, m) = m S(n - 1, m) + S(n - 1, m - 1), for n, m > 0.
Your task is much "easier". Given integers n and m satisfying 1 <= m <= n, compute the parity of S(n, m), i.e. S(n, m) mod 2.
Example
S(4, 2) mod 2 = 1.
Task
Write a program which for each data set:
reads two positive integers n and m,
computes S(n, m) mod 2,
writes the result.
Input
Line i + 1 contains the i-th data set - exactly two integers ni and mi separated by a single space, 1 <= mi <= ni <= 10^9.
Output
Sample Input
1
4 2
Sample Output
1
S(n, m) = m S(n - 1, m) + S(n - 1, m - 1), for n, m > 0
显然
对于m为偶数,S(n,m)=S(n-1,m-1);
m为奇数,S(n,m)=S(n-1,m)+S(n-1,m-1)=S(n-1,m)+S(n-2,m-2)(m为奇数,则m-2为偶数)
这样的话就没有m这个系数,得到一个递推。
但是问题又来了,这个题目n和m都太大,如果是直接地递推,肯定是承受不住的。
那么就要想想别的办法,在网上看到有人讲到的方法就是根据画图,什么意思呢?
以n为x轴,m为y轴
数形结合,当m为偶数的时候可以变为m-1,当m为奇数的时候可以变为m和m-2,这样就是全部是奇数了。
同时又一个关键的地方需要理解。求S(n,m)就是求又多上条路径从(0,0)到(n,m)仔细理解一下。
这样的话思路又变化到排列组合上来。上面说到所有的偶数m都会变成m-1(奇数),同时对于奇数(n,m)可以变为(n-1,m)和(n-2,m-2)(其实就是两条路)
这样的话就是总共有多少种走法呢。
总共要横着走n-m步,斜着走(即从n,m变为n-2,m-2)(m-1)/2步。
总用要走n-m+(m-1)/2步,
这样总路径数就是C(n-m+(m-1)/2,(m-1)/2)。
于是听过欧拉函数的类似性质就可以迅速地得到所求的答案了呢。
我的代码:
#include <iostream>
#include <cstdio>
using namespace std; int d,n,m; int count(int x)
{
return x==0?0:x/2+count(x/2);
} int main()
{
scanf("%d",&d);
while (d--)
{
scanf("%d%d",&n,&m);
n-=m,m=(m-1)/2;
if (count(n+m)==count(n)+count(m)) puts("1");
else puts("0");
}
return 0;
}
POJ1430的更多相关文章
- POJ1430 Binary Stirling Numbers
@(POJ)[Stirling數, 排列組合, 數形結合] Description The Stirling number of the second kind S(n, m) stands for ...
- 【poj1430】Binary Stirling Numbers(斯特林数+组合数)
传送门 题意: 求\(S(n,m)\% 2\)的值,\(n,m\leq 10^9\),其中\(S(n,m)\)是指第二类斯特林数. 思路: 因为只需要关注奇偶性,所以递推式可以写为: 若\(m\)为偶 ...
- HDU_1430 魔板 【BFS+康托展开+置换】
一.题面 POJ1430 二.分析 该题与之前做的八数码不同,它是一个2*4的棋盘,并且没有空的区域.这样考虑的情况是很少的,依然结合康托展开,这时康托展开最多也只乘7的阶乘,完全可以BFS先预处理一 ...
随机推荐
- JDBC注册驱动的三种方式(MySQL)
第一种:通过反射Class.forName("com.mysql.jdbc.Driver"); 第二种:通过DriverManage的静态方法DriverManager.regis ...
- js获取字符串字节数方法小结
js获取字符串字节数的方法.分享给大家供大家参考.具体如下: 大家都知道,获取字符串的长度可用length来获取,那么获取这段字符串的字节数呢? 英文字母肯定lenght和字节数都一样:都是1而中文l ...
- stl源码分析之hash table
本文主要分析g++ stl中哈希表的实现方法.stl中,除了以红黑树为底层存储结构的map和set,还有用哈希表实现的hash_map和hash_set.map和set的查询时间是对数级的,而hash ...
- SpringBoot文件上传异常之提示The temporary upload location xxx is not valid
原文: 一灰灰Blog之Spring系列教程文件上传异常原理分析 SpringBoot搭建的应用,一直工作得好好的,突然发现上传文件失败,提示org.springframework.web.multi ...
- NO--13微信小程序,左右联动
写在前面: 从2016年张小龙发布微信小程序这种新的形态,到2017年小程序的不温不火,再到今年小程序的大爆发,从一度刷爆朋友圈的‘头脑王者’,再到春节聚会坐在一起的火爆小游戏“跳一跳",都 ...
- Hyperledger Fabric服务器配置及修改Docker容器卷宗存储根目录/位置
Hyperledger Fabric节点服务器对存储空间的消耗还是比较大的,在我实际生产体验的过程中,每一条请求数据大概仅2K左右,但实际占用空间远不止这点,每个节点都会对Block及链进行保存维护, ...
- 程序员应该懂的ip地址知识汇总
1.A类ip由1字节(1字节是8位2进制数)的网络地址和3字节的主机地址组成,网络地址最高位必须是0,地址范围是从1.0.0.0到126.0.0.0,所以A类网络地址有126个,每个网络能容纳至少2^ ...
- 基于KVM的H3C云计算平台CAS运维经验
- BP神经网络算法推导
目录 前置知识 梯度下降法 激活函数 多元复合函数求偏导的相关知识 正向计算 符号定义 输入层 隐含层 输出层 误差函数 反向传播 输出层与隐含层之间的权值调整 隐含层与输入层之间权值的调整 计算步骤 ...
- Python-opencv摄像头图像捕获
实例一 (灰色调度) #!/usr/bin/env python # _*_ coding:utf-8 _*_ import cv2 as cv import numpy as np capture ...