【codeforces】940F题解
CF Round #466的最后一题,颇有难度,正解是带修改莫队算法。
【题意】
给定一个长度为\(n\)的数组\(a\),并且要求执行\(q\)个操作,有两种不同的操作:
①询问一个区间\([l,r]\)中集合\(\left\{c_{0},c_{1},c_{2},\cdots,c_{10^9}\right\}\)的Mex,而\(c_i\)表示数值\(i\)在\([l,r]\)中的出现次数。
②把\(a_p\)修改成\(x\)。
对每一个询问输出答案。
【题解】
典型的区间问题,不要求在线,可以考虑莫队。
有时间轴影响,故使用带修改莫队,时间复杂度应为\(O(n^{\frac{5}{3}})\)。
先对区间的移动进行分析:
使用离散化技巧,把输入数据压缩至\(n+q\)的范围内。
维护两个数组\(count1,count2\),\(count1\)记录(离散后的)每个数的出现次数,\(count2\)记录\(count1\)中的数的出现次数。
那么所求为\(count2\)中第一个为0的下标位置。
对于\(count1,count2\),我们都可以\(O(1)\)维护每个操作对数组的影响,接下来考虑如何计算答案。
\(count2\)数组的变动,让第一个为0的下标位置可能会有很大的跳跃,不好维护,那么我们注意到一个性质:
答案不会超过\(O(\sqrt{n})\),为什么呢?
假如要将\(count2_1,count2_2,\cdots,count2_k\)填满的话,至少需要\(\frac{k(k+1)}{2}\)个元素,可是数组的总长只有\(n\),所以答案必然不能太大。
那么有了这个性质,可以暴力维护答案,维护答案的总的复杂度不会超过\(O(q\sqrt{n})\)。
关于莫队,还有几个需要注意的地方:
第一个是当维护区间变化时,先考虑"伸展",再考虑"压缩",要不然会出现区间\(r<l\)的情况。
一般的莫队不会太在意这个,因为后面会再加回来,但是这题中可能会导致中间结果多减了,导致\(count2\)数组越界。
第二个是在带修改莫队时间轴移动上,千万不要颠倒了时间顺序,这其实也是常识了,不过我被这个卡了一会儿。
#include<cstdio>
#include<algorithm>
using namespace std;
#define F(i,a,b) for(int i=(a);i<=(b);++i)
#include<cmath>
int n,q,tim,cnt,sig,S;
struct Qur{int x,y,t,i;}Qs[100001];
int a[100001],b[200001],blk[100001];
inline bool cmp(Qur p1,Qur p2){return blk[p1.x]==blk[p2.x]?(blk[p1.y]==blk[p2.y]?p1.t<p2.t:blk[p1.y]<blk[p2.y]):blk[p1.x]<blk[p2.x];}
int p[100001],k[100001],k_[100001],ans[100001];
int count1[200001],count2[100001];
inline void gx1(int i){--count2[count1[i]];++count2[++count1[i]];}
inline void gx2(int i){--count2[count1[i]];++count2[--count1[i]];}
int main(){
scanf("%d%d",&n,&q); S=(int)pow(n,2.0/3.0);
F(i,1,n) scanf("%d",a+i), b[i]=a[i], blk[i]=(i-1)/S+1;
F(i,1,q){
int opt,x,y; scanf("%d%d%d",&opt,&x,&y);
if(opt==1) Qs[++cnt]=(Qur){x,y,tim,cnt};
else ++tim, b[n+tim]=y, p[tim]=x, k_[tim]=a[x], k[tim]=a[x]=y;
} F(i,1,n) a[i]=b[i];
sort(Qs+1,Qs+cnt+1,cmp); sort(b+1,b+n+tim+1); sig=unique(b+1,b+n+tim+1)-b-1;
F(i,1,n) a[i]=lower_bound(b+1,b+sig+1,a[i])-b;
F(i,1,tim) k[i]=lower_bound(b+1,b+sig+1,k[i])-b, k_[i]=lower_bound(b+1,b+sig+1,k_[i])-b;
count2[0]=sig+10;
int l=1, r=0, t=0;
F(i,1,cnt){
while(Qs[i].x<l) gx1(a[--l]);
while(Qs[i].y>r) gx1(a[++r]);
while(Qs[i].x>l) gx2(a[l++]);
while(Qs[i].y<r) gx2(a[r--]);
while(Qs[i].t>t) ++t, (Qs[i].x<=p[t]&&p[t]<=Qs[i].y)?gx1(k[t]),gx2(k_[t]):void(0), a[p[t]]=k[t];
while(Qs[i].t<t) (Qs[i].x<=p[t]&&p[t]<=Qs[i].y)?gx1(k_[t]),gx2(k[t]):void(0), a[p[t]]=k_[t], --t;
for(ans[Qs[i].i]=1;count2[ans[Qs[i].i]];++ans[Qs[i].i]);
}
F(i,1,cnt) printf("%d\n",ans[i]);
return 0;
}
【codeforces】940F题解的更多相关文章
- codeforces#536题解
CodeForces#536 A. Lunar New Year and Cross Counting Description: Lunar New Year is approaching, and ...
- Machine Learning CodeForces - 940F(带修改的莫队)
题解原文地址:https://www.cnblogs.com/lujiaju6555/p/8468709.html 给数组a,有两种操作,1 l r查询[l,r]中每个数出现次数的mex,注意是出现次 ...
- codeforces 1093 题解
12.18 update:补充了 $ F $ 题的题解 A 题: 题目保证一定有解,就可以考虑用 $ 2 $ 和 $ 3 $ 来凑出这个数 $ n $ 如果 $ n $ 是偶数,我们用 $ n / 2 ...
- Codeforces 940F Machine Learning (带修改莫队)
题目链接 Codeforces Round #466 (Div. 2) Problem F 题意 给定一列数和若干个询问,每一次询问要求集合$\left\{c_{0}, c_{1}, c_{2}, ...
- codeforces 940F 带修改的莫队
F. Machine Learning time limit per test 4 seconds memory limit per test 512 megabytes input standard ...
- Codeforces Numbers 题解
这题只需要会10转P进制就行了. PS:答案需要约分,可以直接用c++自带函数__gcd(x,y). 洛谷网址 Codeforces网址 Code(C++): #include<bits/std ...
- Codeforces 691E题解 DP+矩阵快速幂
题面 传送门:http://codeforces.com/problemset/problem/691/E E. Xor-sequences time limit per test3 seconds ...
- Codeforces 833B 题解(DP+线段树)
题面 传送门:http://codeforces.com/problemset/problem/833/B B. The Bakery time limit per test2.5 seconds m ...
- Codeforces 840C 题解(DP+组合数学)
题面 传送门:http://codeforces.com/problemset/problem/840/C C. On the Bench time limit per test2 seconds m ...
随机推荐
- 【Java并发编程】之十:使用wait/notify/notifyAll实现线程间通信的几点重要说明
在Java中,可以通过配合调用Object对象的wait()方法和notify()方法或notifyAll()方法来实现线程间的通信.在线程中调用wait()方法,将阻塞等待其他线程的通知(其他线程调 ...
- hbase 原子操作cas
在高并发的情况下,对数据row1 column=cf1:qual1, timestamp=1, value=val1的插入或者更新可能会导致非预期的情况, 例如:原本客户端A需要在value=val ...
- 【CF888G】Xor-MST(最小生成树,Trie树)
[CF888G]Xor-MST(最小生成树,Trie树) 题面 CF 洛谷 题解 利用\(Kruskal\)或者\(Prim\)算法都很不好计算. 然而我们还有一个叫啥来着?\(B\)啥啥的算法,就叫 ...
- 洛谷 P1777 帮助_NOI导刊2010提高(03) 解题报告
P1777 帮助_NOI导刊2010提高(03) 题目描述 Bubu的书架乱成一团了!帮他一下吧! 他的书架上一共有n本书.我们定义混乱值是连续相同高度书本的段数.例如,如果书的高度是30,30,31 ...
- BZOJ 3438 小M的作物 & BZOJ 1877 [SDOI2009]晨跑
我由衷地为我的朋友高兴.哈哈,yian,当你nick name破百上千时,再打“蒟蒻”就会被打的. 好的,说正事吧.请注意,这还是题解.但我发现,网络流实在是太套路了(怪不得这两年几乎销声匿迹).我们 ...
- Java入门:基础算法之获取用户输入
本部分演示如何获取用户输入.我们使用Scanner类来得到用户输入.下面的实例代码中演示了如何获取用户输入的字符串.整数和float数据.主要用到了以下方法: 1)public String next ...
- JS--条件语句
一.If条件判断 1.1 if条件 if(条件){ //js代码 } 1.2 if...else if(条件){ //js代码 }else { //js代码 } 1.3 if..else if..el ...
- Go_17:GoLang中如何使用多参数属性传参
我们常常因为传入的参数不确定而头疼不已,golang 为我们提供了接入多值参数用于解决这个问题.但是一般我们直接写已知代码即所有的值都知道一个一个塞进去就好了,但是绝大部分我们是得到用户的大量输入想通 ...
- table 样式美化
1. 单像素边框CSS表格 这是一个很常用的表格样式. 源代码: <!-- CSS goes in the document HEAD or added to your external sty ...
- np.repeat函数
np.repeat用法 觉得有用的话,欢迎一起讨论相互学习~Follow Me np.repeat用于将numpy数组重复 一维数组重复三次 import numpy as np # 随机生成[0,5 ...