cogs 1330 [HNOI2008]玩具装箱toy
cogs 1330 [HNOI2008]玩具装箱toy
瞎扯,急忙AC的请跳过
感觉数据结构写的太多了有点晕=+
发现还没学斜率优化+-
于是来学一学QwQ
上次这题打了个决策优化直接水过了。。理论O(n^2)
蒯个链接
来推一推~
设f[i]为搞定区间1~i的答案。
推出转移方程:
\]
其中\(s_i\)为\(\sum_{j=1}^{i}C_j\)
这里优化一下:\(s_i\)表示\(i+\sum_{j=1}^{i}C_j\),转移方程简化为
\]
其实没那个必要优化,只是看着爽
然后,\(s_i-1-L\)只和\(i\)有关,\(-s_j\)只和j有关。一次转移中\(i\)是不会变的,\(s_i-1-L\)也是不会变的。
令\(X=s_i-1-L\).
\(f[i]=min(f[j]+(X-s_j)^2)\)
\(\ \ \ \ \ \ =min(f[j]+X^2+s_j^2-2Xs_j)\)
那个\(X^2\)与\(j\)毫无关联,完全可以提出来。
\(\ \ \ \ \ \ =min(f[j]+s_j^2-2Xs_j)+X^2\)
换一个角度:一个\(j\)会转移给不同的\(i\),转移过程中\(f[j]+s_j^2\)不会改变,改变的只有\(-2Xs_j\)
然后,由于\(X\)的不同,转移过去的值也不同。
这个值其实是个一次函数\(y=-2Xs_j+f[j]+s_j^2\).
把\(-2s_j\)看成\(k\),把\(f[j]+s_j^2\)看成\(b\).
画出笛卡尔平面直角坐标系。
(自行脑补,懒得画了)
有一些线是不需要的,因为x取什么值,它都取不到最小,可以删除
然后维护一个单调队列放所有的线
可以发现\(k\)单调递减,\(x\)单调递增,所以很好维护,如果队首答案>队首+1答案直接hd++,懒得证。
怎么维护真的懒得写了。。。下凸壳的左半部分
然后直接上代码吧?
感觉是最详细的一篇博客了
// It is made by XZZ
#include<cstdio>
#include<algorithm>
using namespace std;
#define rep(a,b,c) for(rg int a=b;a<=c;a++)
#define drep(a,b,c) for(rg int a=b;a>=c;a--)
#define erep(a,b) for(rg int a=fir[b];a;a=nxt[a])
#define il inline
#define rg register
#define vd void
#define db double
typedef long long ll;
il int gi(){
rg int x=0,f=1;rg char ch=getchar();
while(ch<'0'||ch>'9')f=ch=='-'?-1:f,ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
const int maxn=50001;
ll s[maxn],f[maxn];
struct line{ll k,b;};
struct point{db x,y;};
il point javascript(const line&a,const line&b){
static point ret;
ret.x=(a.b-b.b)/(db)(a.k-b.k);
ret.y=ret.x*a.k+a.b;
return ret;
}
line que[maxn];int hd,tl;
int main(){
int n=gi();ll l=gi();
rep(i,1,n)s[i]=gi()+s[i-1];
rep(i,1,n)s[i]+=i;
f[0]=0;
hd=0,tl=-1;
que[++tl]=(line){0,0};
rep(i,1,n){
static ll x;x=s[i]-l-1;
while((tl^hd)&&que[hd].k*x+que[hd].b>que[hd+1].k*x+que[hd+1].b)++hd;
f[i]=que[hd].k*x+que[hd].b+x*x;
static line ls;ls=(line){-2*s[i],f[i]+s[i]*s[i]};
while((tl^hd)&&javascript(ls,que[tl]).x>javascript(ls,que[tl-1]).x)--tl;
que[++tl]=ls;
}
printf("%lld\n",f[n]);
return 0;
}
cogs 1330 [HNOI2008]玩具装箱toy的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- 【bzoj1010】[HNOI2008]玩具装箱toy
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9281 Solved: 3719[Submit][St ...
- 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9330 Solved: 3739 Descriptio ...
- bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7874 Solved: 3047[Submit][St ...
- BZOJ 1010 [HNOI2008]玩具装箱toy
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7184 Solved: 2724[Submit][St ...
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)
P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...
- [luogu P3195] [HNOI2008]玩具装箱TOY
[luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...
随机推荐
- 转: C# 的结构剖析
原文链接:http://www.cnblogs.com/jiajiayuan/archive/2011/09/20/2181582.html 本文意在巩固基础知识,并不是对其进行深入剖析,还望理解.本 ...
- 使用Github的高级搜索功能
使用Github的高级搜索功能 1. 首先,提供Github高级搜索帮助页面 https://help.github.com/categories/search/ 2. 搜索语法 https://he ...
- exits, in, left join性能比较
exits in left join性能比较 ,笔者使用的是MYSQL数据库,这三个关键字方法在其他的关系数据库里也是大同小异,如果各种有兴趣,自行比较. 我这里有一个249_account 表,总 ...
- 利用Jquey.hover来实现 鼠标移入出现删除按钮,鼠标移出删除消失
Html代码 <div class="box"><div class="bmbox" onclick="$('.box:first' ...
- JDK1.6在LINUX下的安装配置[转]
JDK1.6在LINUX下的安装是如何进行的呢,让我们开始我们的演示: Ubuntu Linux下jdk的安装与配置 1.JDK1.6安装准备 从sun公司网站www.sun.com下载linux版本 ...
- JavaScript的DOM操作获取元素周边大小
一.clientLeft 和 clientTop 这组属性可以获取元素设置了左边框和上边框的大小,目前只提供了 Left 和 Top 这组,并没有提供 Right 和 Bottom. <scri ...
- AbstractApplicationContext 笔记
一.这个类的属性 public abstract class AbstractApplicationContext extends DefaultResourceLoader implements C ...
- libextobjc 实现的 defer
算法沉思录:分而治之(复用): 分而治之是指把大而复杂的问题分解成若干个简单的小问题,然后逐个解决.这种朴素的思想来源于人们生活与工作的经验,也完全适合于技术领域. 要崩溃的节奏: 要崩溃的节奏: V ...
- loli的测试——搜索
今天是2018.5.24,loli给我们说要考搜索,本来以为是给初学者们考的就没准备,然而老师说我们也要考.(2018.6.29补:这次的简单测试与之后变得非常难的几次搜索测试形成了鲜明的对比,从而更 ...
- Day19 网络编程
基本概念 网络:一组由网线连接起来的计算机. 网络的作用: 1.信息共享. 2.信息传输. 3.分布式处理. 4.综合性的处理. internet:互联网 Internet:是互联网中最大的一个. w ...