cogs 1330 [HNOI2008]玩具装箱toy


瞎扯,急忙AC的请跳过

感觉数据结构写的太多了有点晕=+

发现还没学斜率优化+
-

于是来学一学QwQ

上次这题打了个决策优化直接水过了。。理论O(n^2)


蒯个链接

来推一推~

设f[i]为搞定区间1~i的答案。

推出转移方程:

\[f[i]=min(f[j]+(s_i-s_j+i-j-1-L)^2) (j\in[0,i-1])
\]

其中\(s_i\)为\(\sum_{j=1}^{i}C_j\)

这里优化一下:\(s_i\)表示\(i+\sum_{j=1}^{i}C_j\),转移方程简化为

\[f[i]=min(f[j]+(s_i-s_j-1-L)^2) (j\in[0,i-1])
\]

其实没那个必要优化,只是看着爽

然后,\(s_i-1-L\)只和\(i\)有关,\(-s_j\)只和j有关。一次转移中\(i\)是不会变的,\(s_i-1-L\)也是不会变的。

令\(X=s_i-1-L\).

\(f[i]=min(f[j]+(X-s_j)^2)\)

\(\ \ \ \ \ \ =min(f[j]+X^2+s_j^2-2Xs_j)\)

那个\(X^2\)与\(j\)毫无关联,完全可以提出来。

\(\ \ \ \ \ \ =min(f[j]+s_j^2-2Xs_j)+X^2\)

换一个角度:一个\(j\)会转移给不同的\(i\),转移过程中\(f[j]+s_j^2\)不会改变,改变的只有\(-2Xs_j\)

然后,由于\(X\)的不同,转移过去的值也不同。

这个值其实是个一次函数\(y=-2Xs_j+f[j]+s_j^2\).

把\(-2s_j\)看成\(k\),把\(f[j]+s_j^2\)看成\(b\).

画出笛卡尔平面直角坐标系。

(自行脑补,懒得画了)

有一些线是不需要的,因为x取什么值,它都取不到最小,可以删除

然后维护一个单调队列放所有的线

可以发现\(k\)单调递减,\(x\)单调递增,所以很好维护,如果队首答案>队首+1答案直接hd++,懒得证。

怎么维护真的懒得写了。。。下凸壳的左半部分

然后直接上代码吧?

感觉是最详细的一篇博客了

// It is made by XZZ
#include<cstdio>
#include<algorithm>
using namespace std;
#define rep(a,b,c) for(rg int a=b;a<=c;a++)
#define drep(a,b,c) for(rg int a=b;a>=c;a--)
#define erep(a,b) for(rg int a=fir[b];a;a=nxt[a])
#define il inline
#define rg register
#define vd void
#define db double
typedef long long ll;
il int gi(){
rg int x=0,f=1;rg char ch=getchar();
while(ch<'0'||ch>'9')f=ch=='-'?-1:f,ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
const int maxn=50001;
ll s[maxn],f[maxn];
struct line{ll k,b;};
struct point{db x,y;};
il point javascript(const line&a,const line&b){
static point ret;
ret.x=(a.b-b.b)/(db)(a.k-b.k);
ret.y=ret.x*a.k+a.b;
return ret;
}
line que[maxn];int hd,tl;
int main(){
int n=gi();ll l=gi();
rep(i,1,n)s[i]=gi()+s[i-1];
rep(i,1,n)s[i]+=i;
f[0]=0;
hd=0,tl=-1;
que[++tl]=(line){0,0};
rep(i,1,n){
static ll x;x=s[i]-l-1;
while((tl^hd)&&que[hd].k*x+que[hd].b>que[hd+1].k*x+que[hd+1].b)++hd;
f[i]=que[hd].k*x+que[hd].b+x*x;
static line ls;ls=(line){-2*s[i],f[i]+s[i]*s[i]};
while((tl^hd)&&javascript(ls,que[tl]).x>javascript(ls,que[tl-1]).x)--tl;
que[++tl]=ls;
}
printf("%lld\n",f[n]);
return 0;
}

cogs 1330 [HNOI2008]玩具装箱toy的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  3. 【bzoj1010】[HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9281  Solved: 3719[Submit][St ...

  4. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

  5. bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][St ...

  6. BZOJ 1010 [HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2724[Submit][St ...

  7. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  8. P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)

    P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...

  9. [luogu P3195] [HNOI2008]玩具装箱TOY

    [luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...

随机推荐

  1. 什么时候会执行viewDidLoad方法

    什么时候会执行viewDidLoad方法 这个博文是为了解释,为何有时候,你给属性赋值,在viewDidLoad方法中却取不到值的原因. 第一种情况,presentViewController会执行被 ...

  2. Linux学习---Linux用户审计简单版

    [root@localhost root]# vim /etc/profile # SHENJI history USER=`whoami` USER_IP=`who -u am i 2>/de ...

  3. Linux /dev/null详解

    常用的命令展示 /dev/null 和 /dev/zero的区别        1./dev/null:表示 的是一个黑洞,通常用于丢弃不需要的数据输出, 或者用于输入流的空文件            ...

  4. 铁乐学python_Day43_协程

    铁乐学python_Day43_协程 引子 之前我们学习了线程.进程的概念,了解了在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位. 按道理来说我们已经算是把cpu的利用率提高很多了. ...

  5. [EffectiveC++]item26:尽可能延后变量定义式的出现时间

  6. if a in range(len(lst)): print(a,lst[a]) #获取索引和对应元素, 背下来~~

    经典的"获取元素的索引和元素", 背下来! if a in range(len(lst)): print(a, lst[a])

  7. nginx alias

    A path to the file is constructed by merely adding a URI to the value of the root directive. If a UR ...

  8. MySQL-5.6版本GTID的主从复制

    mysql GTID Replication 一.GTID的概述: 1.全局事物标识:global transaction identifieds. 2.GTID事物是全局唯一性的,且一个事务对应一个 ...

  9. Java并发编程--4.Executor框架

    简介 Executor框架是启动,管理线程的API, 它的内部实现是线程池机制,它有很多好处,比如使任务提交和任务执行解耦合,防止this逃逸:它的主要API包括: Executor,  Execut ...

  10. PHP运行模式简单总结

    众所周知,PHP有多种运行模式,那么这些模式各自有什么特点,它们之间又有什么区别呢,本文将作一个简单的总结: CGI 模式 所谓 CGI (Common Gateway Interface) 是指通用 ...