什么是MapReduce?
  • mapreduce 是一种软件框架
  • mapreduce job将任务分解为独立的块儿到不同的map task,进行并行处理;
  • map任务输出会做相应的排序处理,并作为reduce 任务输入;
  • 框架能很好的处理定时任务,进行监控并能够重新执行失败的任务。
计算和存储:mapreduce 和 haddoop:
 
通常来讲,计算节点和存储节点是同一个,即mapreduce框架和hadoop分布式文件系统运行在相同的节点集群,使得任务调度更加高效,网络带宽更聚合。
 
mapreduce框架包括一个单一的ResourceManager,每个集群节点一个NodeManager,每个应用一个MRAppMaster节点。
 
基本使用:
 
客户应用设置输入和输出位置=》提供实现map和reduce方法=》haddoop 任务客户端提交任务,同时向ResourceManager提交配置。
 
ResourceManager负责将提交的任务配置项从节点分发,调度任务,监控任务,向客户端提供任务状态及诊断信息。
 
数据形式:
 
mapreduce 框架以 k-v 形式操作数据,输入输出处理;
 
  • key 和 value 需要被序列化,通过实现 Writable 接口,以支持序列化;
  • key 对象还需要实现 WritableComparable 接口,以支持排序需求。
  • 基本处理流程:(input) <k1, v1> -> map -> <k2, v2> -> combine -> <k2, v2> -> reduce -> <k3, v3> (output)
 
Mapper:
 
将输入的k-v 键值对映射转换到中间 k-v 键值对,转换为单独的任务,中间类型和输入类型可以不同,一个输入键值对可能映射转换为0个或多个输出键值对。
 
map结果并不直接存储磁盘,会利用缓存做一些与排序处理,调用combiner,压缩,按key分区,排序等,尽量减少结果的大小。map完成后通知task,reduce进行处理。
  • 每个map拥有一个循环内缓冲区(默认100m),容量达到80%,则后台线程开始将内容写入磁盘文件,不妨碍map继续写入缓冲,缓冲区满,则等待。
  • 写文件使用round-robin方式,写入文件前,将数据按照reduce分区,对于每个分区,根据key排序,可能的话,执行combiner操作。
  • 每次到达缓冲区阈值,都会创建一个文件,map结束前,会执行文件合并(数量不超过3个)和排序。或者压缩(减少数据大小)。
  • 如果从未达到阈值,则不创建文件,直接使用内存。这样最高效。配置可能合适大小的缓冲区(io.file.buffer.size,默认4kb)。
  • map完成,通知任务管理器,reduce可以开始复制结果数据进行使用。
 
Reducer:结果写入到hdfs中,归并处理为小批量结果
 
  • shuffle:从mapper获取相关的结果,排序输出到reduce,http。分配尽可能多的内存
  • sort:将reduce的输入分组
  • reduce:执行reduce方法,处理输入;reduce的数量应为0.95~1.75*节点数。0.95使得所有的reduce可以被全部启动执行;1.75使得执行最快的节点开始执行第二轮,第三轮...;数值越大,负载越大,增加了负载均衡需求,降低了失败成本;reducetask设置为0,则直接跳过reduce阶段,map结果直接输出到FileSystem中
 
哈希分区是默认的分区类型:HashPartitioner is the default Partitioner.
 
Job is typically used to specify the Mapper, combiner (if any), Partitioner, Reducer, InputFormat, OutputFormat implementations. FileInputFormat indicates the set of input files (FileInputFormat.setInputPaths(Job, Path…)FileInputFormat.addInputPath(Job, Path)) and (FileInputFormat.setInputPaths(Job, String…)FileInputFormat.addInputPaths(Job, String)) and where the output files should be written (FileOutputFormat.setOutputPath(Path)).
 
 
job:提交任务,跟踪处理,访问任务报告,日志获取mapreduce集群状态。
 
job提交过程:
 
  • 检查输入输出
  • 计算InputSplit values
  • 为 DistributedCache 设置必要的计算信息
  • 复制jar及配置到mapreduce系统文件夹
  • 提交任务到ResourceManager,监控状态
 
InputSplit:
 
public interface InputSplit extends Writable {
    long getLength() throws IOException;//split 大小,支持根据size排序
 
    String[] getLocations() throws IOException;//获取存储该分片的数据所在节点位置信息
}
 
  • 代表一个逻辑分片,并没有真正的存储数据,提供了如何将数据分片的方法。
  • 内部有Location信息,利于数据局部化。
  • 一个InputSplit给一个单独的map处理
  • mapper处理的键值对象,默认为FileSplit。
  • byte-oriented view;由RecordReader处理成record-oriented view。
 
 
通常一个split对应一个block,使得map可以在存储由当前数据的节点上运行当本地任务,不需要通过网络跨节点调度任务。
 
大小配置: mapred.min.split.size, mapred.max.split.size, block.size
 
获取文件在hdfs上的路径及block信息,根据splitsize对文件进行切分,默认splitsize = blocksize = 64m
 
 
RecordReader:
 
将InputSplit 拆分为k-v 键值对。
 
 
CombineFileInputFormat:将若干个InputSplit打包,避免过多的map任务(split数目决定了map任务数),
 
 
OutputFormat:验证输出配置;写输出文件。
 
DistributedCache 是mapreduce提供的一项机制,用于缓存应用需要的文件(文本,压缩包,jar等)
 
应用通过url(hdfs://url)配置需要缓存的文件;DistributedCache嘉定需要缓存的文件都已经在FileSystem中。
 
在从节点执行任务之前,mapreduce会将需要的文件拷贝到相应节点,
 
DistributedCache会跟踪相应文件的更改时间戳,缓存的文件在任务运行期间不可以被应用或者外部更改。
 
DistributedCache可以被用作文件分发。运行jar,配置等
 
 mapreduce.job.cache.file=file1,file2
 
mapreduce.job.cache.archive=
 
private:本地私有文件;针对相应的job使用;public:公共全局文件夹,被所有任务共享使用。
 
 
 

MapReduce 基础学习的更多相关文章

  1. 零基础学习hadoop到上手工作线路指导初级篇:hive及mapreduce(转)

    零基础学习hadoop到上手工作线路指导初级篇:hive及mapreduce:http://www.aboutyun.com/thread-7567-1-1.html mapreduce学习目录总结 ...

  2. 零基础学习hadoop到上手工作线路指导初级篇:hive及mapreduce

      此篇是在零基础学习hadoop到上手工作线路指导(初级篇)的基础,一个继续总结.五一假期:在写点内容,也算是总结.上面我们会了基本的编程,我们需要对hadoop有一个更深的理解:hadoop分为h ...

  3. Hadoop 综合揭秘——MapReduce 基础编程(介绍 Combine、Partitioner、WritableComparable、WritableComparator 使用方式)

    前言 本文主要介绍 MapReduce 的原理及开发,讲解如何利用 Combine.Partitioner.WritableComparator等组件对数据进行排序筛选聚合分组的功能.由于文章是针对开 ...

  4. 零基础学习hadoop到上手工作线路指导(编程篇)

    问题导读: 1.hadoop编程需要哪些基础? 2.hadoop编程需要注意哪些问题? 3.如何创建mapreduce程序及其包含几部分? 4.如何远程连接eclipse,可能会遇到什么问题? 5.如 ...

  5. 零基础学习hadoop到上手工作线路指导(中级篇)

    此篇是在零基础学习hadoop到上手工作线路指导(初级篇)的基础,一个继续总结. 五一假期:在写点内容,也算是总结.上面我们会了基本的编程,我们需要对hadoop有一个更深的理解: hadoop分为h ...

  6. Spark基础学习精髓——第一篇

    Spark基础学习精髓 1 Spark与大数据 1.1 大数据基础 1.1.1 大数据特点 存储空间大 数据量大 计算量大 1.1.2 大数据开发通用步骤及其对应的技术 大数据采集->大数据预处 ...

  7. [Hadoop in Action] 第4章 编写MapReduce基础程序

    基于hadoop的专利数据处理示例 MapReduce程序框架 用于计数统计的MapReduce基础程序 支持用脚本语言编写MapReduce程序的hadoop流式API 用于提升性能的Combine ...

  8. salesforce 零基础学习(五十二)Trigger使用篇(二)

    第十七篇的Trigger用法为通过Handler方式实现Trigger的封装,此种好处是一个Handler对应一个sObject,使本该在Trigger中写的代码分到Handler中,代码更加清晰. ...

  9. 如何从零基础学习VR

    转载请声明转载地址:http://www.cnblogs.com/Rodolfo/,违者必究. 近期很多搞技术的朋友问我,如何步入VR的圈子?如何从零基础系统性的学习VR技术? 本人将于2017年1月 ...

随机推荐

  1. CSS3 Transform变形理解与应用

    CSS3 Transform变形理解与应用 Transform:对元素进行变形:Transition:对元素某个属性或多个属性的变化,进行控制(时间等),类似flash的补间动画.但只有两个关键贞.开 ...

  2. HBase性能优化 Java Api

    1. 使用“连接池” 如果每次和Hbase交互时都去新建连接的话,显然是低效率的,HBase也提供类连接池相关的API. 1.1. HTablePool 早期的API中使用它,但很不幸,现在它已经过时 ...

  3. Day13 泛型

    泛型 泛型定义 在一个类型(类,接口,方法)之后,定义一个类型参数. 原生类型:类型后面没有指定具体的类型参数. 好处 使用泛型的好处在于,它在编译的时候进行类型安全检查,并且在运行时所有的转换都是强 ...

  4. Odoo发送短信

    转载请注明原文地址:https://www.cnblogs.com/cnodoo/p/9281581.html 一:阿里云短信服务注册 1:开通短信业务:实名认证的个人用户是免费开通:企业用户需要提供 ...

  5. ethereumjs/ethereumjs-common-1-简介

    为了了解ethereumjs/ethereumjs-block-3-代码的使用需要了解的一个模块 https://github.com/ethereumjs/ethereumjs-common Com ...

  6. 关于C#的静态类和静态构造函数

    静态构造函数是C#的一个新特性,其实好像很少用到.不过当我们想初始化一些静态变量的时候就需要用到它了.这个构造函数是属于类的,而不是属于哪里实例的,就是说这个构造函数只会被执行一次.也就是在创建第一个 ...

  7. JDBC 使用common-dbutiles

    一:第三方jar mysql-connector-java-5.1.45-bin.jar,需要关注的核心类: 1.DbUtils----操作数据库的连接注册和释放. 2:.QueryRunner--- ...

  8. iis7中session丢失的解决方法小结

    这篇文章主要介绍了在windows server 2008系统中,session丢失的解决方法,供大家学习参考 问题描述: Windows Server 2008 +IIS +ASP.net +SQL ...

  9. Kafka设计解析(十四)Kafka producer介绍

    转载自 huxihx,原文链接 Kafka producer介绍 Kafka 0.9版本正式使用Java版本的producer替换了原Scala版本的producer.本文着重讨论新版本produce ...

  10. Linux服务-samba

    目录 1. samba简介 2. samba访问 Linux服务-samba 1. samba简介 Samba是在Linux和UNIX系统上实现SMB协议的一个免费软件,由服务器及客户端程序构成. 在 ...