前几天接的一个小项目,基于欧氏距离和马氏距离的异常点检测,已经交接完毕,现在把代码公开。

基于欧式距离的:

load data1.txt %导入数据,行为样本,列为特征

X=data1; %赋值给X

u=mean(X); %求均值

[m,n]=size(X);

for i=1:m

dist(i)=sqrt(sum(X(i,:)-u).^2);

end

[a,b]=sort(dist);%对欧氏距离进行排序

T=ceil(m*0.02)%设置阀值

 

Threshold=a(m-T);%定为阀值

len=length(a);

for i = 1:len %遍历,如果小于阀值为正常点

if a(i) < Threshold

inlier(i) = [b(i)];

s=b(i);

disp(['正常点序列号:',num2str(s)])

 

end

end

% inlier

for i = 1:len %遍历,如果大于等于阀值为正常点

if a(i)>= Threshold

outlier(i) = [b(i)];

ns=b(i)

disp(['离群点序列号:',num2str(ns)])

end

end

% outlier

 

 

 

基于马氏距离的:

load data1.txt %导入数据,行为样本,列为特征

X=data1; %赋值给X

u=mean(X); %求均值

[m,n]=size(X);

for i=1:m

newdata=[X(i,:);u]

cov_w=cov(newdata);%求协方差矩阵

dist(i)=(X(i,:)-u)*cov_w*(X(i,:)-u)'%求出每个样本到u的马氏距离

end

[a,b]=sort(dist);%对马氏距离进行排序

T=ceil(m*0.02)%设置阀值

Threshold=a(m-T);%定为阀值

clear T;

len=length(a);

for i = 1:len %遍历,如果小于阀值,为正常点

if a(i) < Threshold

inlier(i) = [b(i)];

s=b(i);

disp(['正常点序列号:',num2str(s)])

end

end

% inlier

for i = 1:len %遍历,如果大于等于阀值为异常点

if a(i)>= Threshold

outlier(i) = [b(i)];

l=b(i)

disp(['离群点序列号:',num2str(l)])

end

end

% outlier

基于欧氏距离和马氏距离的异常点检测—matlab实现的更多相关文章

  1. MATLAB求马氏距离(Mahalanobis distance)

    MATLAB求马氏距离(Mahalanobis distance) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1.马氏距离计算公式 d2(xi,  ...

  2. 马氏距离(Mahalanobis distance)

    马氏距离(Mahalanobis distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离.它是一种有效的计算两个未知样本集的相似度的方法.与欧 ...

  3. paper 114:Mahalanobis Distance(马氏距离)

    (from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Mahalan ...

  4. Mahalanobis距离(马氏距离)的“哲学”解释

    讲解教授:赵辉 (FROM : UESTC) 课程:<模式识别> 整理:PO主 基础知识: 假设空间中两点x,y,定义: 欧几里得距离, Mahalanobis距离, 不难发现,如果去掉马 ...

  5. Mahalanobis Distance(马氏距离)

    (from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Mahalan ...

  6. 有关马氏距离和hinge loss的学习记录

    关于度量学习,之前没有看太多相关的文献.不过南京的周老师的一篇NIPS,确实把这个问题剖析得比较清楚. Mahalanobis距离一般表示为d=(x-y)TM(x-y),其中x和y是空间中两个样本点, ...

  7. Mahalanobia Distance(马氏距离)的解释

    马氏距离有多重定义: 1)可以表示 某一个样本与DataSet的距离. 2)可以表示两个DataSet之间的距离. 1) The Mahalanobis distance of an observat ...

  8. Python实现的计算马氏距离算法示例

    Python实现的计算马氏距离算法示例 本文实例讲述了Python实现的计算马氏距离算法.分享给大家供大家参考,具体如下: 我给写成函数调用了 python实现马氏距离源代码:     # encod ...

  9. 机器学习中应用到的各种距离介绍(附上Matlab代码)

    转载于博客:各种距离 在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的"距离"(Distance). ...

随机推荐

  1. Idea下Maven的使用

    一.导入maven结构的web工程 (1)在Intellij IDEA中选择File->New->Project from Version Control->Subversion. ...

  2. PS中把图片白色背景变成透明的方法

    用魔术橡皮擦擦去白色(调整容差,取消连续,点选白色部分),保存成png格式

  3. HTTP学习笔记(一)报文和连接管理

    对TCP/IP协议簇有些了解的同学们应该都知道.TCP/IP协议通过精简ISO网络7层协议(事实上了解历史渊源的话,TCP/IP协议本来目的并非简化ISO的7层协议.仅仅是因为ISO协议簇制定速度慢于 ...

  4. Spring 小记

    本作品由Man_华创作,采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可.基于http://www.cnblogs.com/manhua/上的作品创作. 使用STS新建spr ...

  5. VS2015 定位内存泄漏工具vld

    介绍一款在vs2015开发环境定位内存泄漏工具:Visual Leak Detector ,具体的使用方法如下: 1.  安装vld-2.5-setup.exe (下载链接地址后面会给出),安装过程会 ...

  6. void 0 或者 undefined

    Problem 在检查一个值是否为undefined的时候.你们是假设去測试的? 要是之前的我会这样子測试 function isUndefined(obj){ return obj === unde ...

  7. html中文件类型的accept属性有哪些

    *.3gpp audio/3gpp, video/3gpp 3GPP Audio/Video *.ac3 audio/ac3 AC3 Audio *.asf allpication/vnd.ms-as ...

  8. 【Selenium + Python】之如何获取最新的报告以及os.path.getmtime与os.path.getctime的区别

    import os def new_file(test_dir): #列举test_dir目录下的所有文件(名),结果以列表形式返回. lists=os.listdir(test_dir) #sort ...

  9. MAC平台create-react-app使用问题(command not found)

    You are able to apply the following solution: $ npm config set prefix /usr/local $ sudo npm install ...

  10. Unity编辑器扩展之RequireComponent等详解

    RequireComponent的使用: 当你添加的一个用了RequireComponent组件的脚本,需要的组件将会自动被添加到game object(游戏物体).这个可以有效的避免组装错误.举个例 ...