vijos次小生成树
xiaomengxian的哥哥是一个游戏迷,他喜欢研究各种游戏。这天,xiaomengxian到他家玩,他便拿出了自己最近正在研究的一个游戏给xiaomengxian看。这个游戏是这样的:一个国家有N个城市,有些城市之间可以建设铁路,并且不同城市之间建设铁路的费用各不相同。问如何用最小的费用,使整个国家的各个城市之间能够互相到达。另外,铁路是双向的。xiaomengxian心想,这不是太简单了吗?这就是经典的MST问题。他的哥哥说,这个当然不算什么。关键是它还要求费用第二小的方案,这真是让人伤脑筋。xiaomengxian想了很久,也没有想出来,你能帮助他吗?
费用第二小的方案的定义为:与费用最小的方案不完全相同,且费用值除费用最小的方案外最小。
同vijos 1070 网址:https://www.vijos.org/p/1070
题解:
次小生成树,就是求除了最小生成树之外最小的那个生成树。
下面介绍一下利用prim求次小生成树的主要步骤。
1.先求出来最小生成树。并将最小生成树任意两点之间路径当中的权值最大的那一条找出来,为什么要找最大的呢,因为生成树加入一条边之后一定构成了回路,那么肯定要去掉这个回路当中一条边才是生成树,那么,怎么去边才是次小的,那就去掉除了刚刚添加的一条边之外回路当中权值最大的一个,所以留下的就是最小的。
2.枚举最小生成树外的每一条边。找出最小的就是次小生成树。
代码如下,若还是不懂,代码中有注释,可自行参悟
#include<cstdio>
#include<algorithm>
using namespace std;
int s,minn,g[][],m,x,y,z,ss,minn2,low[],pre[],low2[][];
int i,mini,sum,n,t; bool b[],used[][];
int main()
{
scanf("%d%d",&n,&m);
for(i=;i<=n;i++)
{
g[i][i]=;
for(int j=i+;j<=;j++)
g[i][j]=g[j][i]=;
}
for(i=;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
g[y][x]=g[x][y]=z;//双向边
}
for(i=;i<=n;i++)
low[i]=,pre[i]=i;
pre[]=;
low[]=;s=;ss=;
int k,kk;
while()
{
minn=;
for(i=;i<=n;i++)
{
if(!b[i]&&low[i]<minn)
{
minn=low[i];
mini=i;
}
}
if(minn==)break;
b[mini]=;
s=s+minn;
used[mini][pre[mini]]=used[pre[mini]][mini]=;
for(i=;i<=n;i++)
{
if(b[i]&&i!=mini)low2[i][mini]=low2[mini][i]=max(low2[i][pre[mini]],low[mini]);//记录最小生成树上的路径最大值
t=min(g[i][mini],g[mini][i]);
if(!b[i]&&t<low[i])
low[i]=t,pre[i]=mini;//学过prim的都知道前半段是什么,后半句是记录路径
}
}
printf("Cost: %d\n",s);
for(int i=;i<=n;i++)
{
for(int j=i+;j<=n;j++)
if(g[i][j]!=&&!used[i][j])
ss=min(ss,s+g[i][j]-low2[i][j]);//枚举每一条边,看看替换该边是否有价值
}
if(ss==)ss=-;//如果没有边可以替换,即没有最小生成树,输出-1
printf("Cost: %d",ss);
}
vijos次小生成树的更多相关文章
- HDU 4081Qin Shi Huang's National Road System(次小生成树)
题目大意: 有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点.秦始皇希望这所有n-1条路长度之和最短.然后徐福突然有冒出来,说是他有魔法,可以不用人力.财力就变 ...
- POJ1679 The Unique MST[次小生成树]
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28673 Accepted: 10239 ...
- The Unique MST(次小生成树)
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22335 Accepted: 7922 Description Give ...
- URAL 1416 Confidential --最小生成树与次小生成树
题意:求一幅无向图的最小生成树与最小生成树,不存在输出-1 解法:用Kruskal求最小生成树,标记用过的边.求次小生成树时,依次枚举用过的边,将其去除后再求最小生成树,得出所有情况下的最小的生成树就 ...
- POJ1679The Unique MST(次小生成树)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25203 Accepted: 8995 D ...
- [kuangbin带你飞]专题八 生成树 - 次小生成树部分
百度了好多自学到了次小生成树 理解后其实也很简单 求最小生成树的办法目前遇到了两种 1 prim 记录下两点之间连线中的最长段 F[i][k] 之后枚举两点 若两点之间存在没有在最小生成树中的边 那么 ...
- URAL 1416 Confidential(次小生成树)
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1416 Zaphod Beeblebrox — President of the Impe ...
- ACM题目————次小生成树
Description 最小生成树大家都已经很了解,次小生成树就是图中构成的树的权值和第二小的树,此值也可能等于最小生成树的权值和,你的任务就是设计一个算法计算图的最小生成树. Input 存在多组数 ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
随机推荐
- Mac端博客发布工具推荐
引子 推荐一款好用的 Mac 端博客发布工具. 下载地址 echo 博客对接 这里以cnblog为例.接入类型为metawebblog,access point可以在cnblog的设置最下边找到,然后 ...
- [CPP - STL] functor刨根问底儿
作为STL六大组件之一,在STL源代码及其应用中,很多地方使用了仿函数(functor),尤其在关联型容器(如set.map)以及algorithm(如find_if.count_if等)中.虽然已经 ...
- CSS动画硬件加速
http://zencode.in/14.CSS%E5%8A%A8%E7%94%BB%E7%9A%84%E6%80%A7%E8%83%BD%E4%BC%98%E5%8C%96.html http:// ...
- Codeforces Round #254 (Div. 2) A. DZY Loves Chessboard —— dfs
题目链接: http://codeforces.com/problemset/problem/445/A 题解: 这道题是在现场赛的最后一分钟通过的,相当惊险,而且做的过程也很曲折. 先是用递推,结果 ...
- 测试,测试开发,QA,QM,QC--------- 测试之路勿跑偏
测试,测试开发,QA,QM,QC可能是测试行业里的细分角色了,加了不少群学习,看到不同人有对自己不同的角色定位.我也做了这挺长时间的测试,也和大部分测试同胞一样,为了一份好的工作学习各种各样的技术,但 ...
- 自动化测试框架selenium+java+TestNG——读取csv文件
读取csv文件可以直接读取,也可以使用javacsv.jar,后者比较简单,这个也可以变相认为是对表格的处理,我们可以在表格中做好数据,存储成csv格式的文件,后续对xlsx表格的操作抽个时间再记录下 ...
- H264 各种profile
关键字:H264 ,base profile, main profile, extend profile, high profile. 提到High Profile H.264解码许多人并不了解,那么 ...
- 001 - 配置Pycharm的字体大小
本文记录的是Pycharm2017年1月版本 1 配置代码区的字体大小 位置在 File -> setting -> Editor -> Color&Fonts -> ...
- Android Studio 生成APK出现的「前言不允许有内容」错误
Build-Generate Signed APK的时候发现提示「前言不允许有内容」.发现提示的是Android.mk.xxxjni.c存在问题. 解决方法是,把/main/res中的,包括/jni目 ...
- C++类对象之间的类型转换和重载
类对象和其他类型对象的转换 转换场合有: 赋值转换 表达式中的转换 显式转换 函数调用, 传递参数时的转换 转换方向有: 由定义类向其他类型的转换 由其他类型向定义类的转换 #include < ...