传送:https://vjudge.net/problem/TopCoder-14084

只是利用了笛卡尔树的性质,设f[i][j]为区间[i,j]的贡献,然后枚举中间最大的点k来转移,首先是两侧小区间贡献的,f[i][k-1]*fac[j-k]+f[k+1][j]*fac[k-i],大概是方案数相乘的形式

然后考虑中间点的儿子的贡献,是\( fac[k-i-1]|*fac[j-k-1]|*sum_{l=i}{k-1}\sum_{r=k+1}{j}r-l \),前面表示两侧任意排列,后面两个求和可以化简

然后最后整体乘c[j-i][k-i]表示选出一部分作为左儿子

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
class BearPermutations2
{
private:
long long mod,f[105][105],c[105][105],fac[105];
public:
long long clc(long long l,long long r)
{
return (l+r)*(r-l+1)/2%mod;
}
int getSum(int n,int MOD)
{
memset(f,0,sizeof(f));
memset(c,0,sizeof(c));
mod=MOD;
fac[0]=1;
for(int i=1;i<=n;i++)
fac[i]=fac[i-1]*i%mod;
c[0][0]=1;
for(int i=1;i<=n;i++)
{
c[i][0]=1;
for(int j=1;j<=i;j++)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
}
for(int i=n;i>=1;i--)
for(int j=i;j<=n;j++)
for(int k=i;k<=j;k++)
{
if(k!=i)
f[i][j]=(f[i][j]+c[j-i][k-i]*f[i][k-1]%mod*fac[j-k]%mod)%mod;
if(k!=j)
f[i][j]=(f[i][j]+c[j-i][k-i]*f[k+1][j]%mod*fac[k-i]%mod)%mod;
if(k!=i&&k!=j)
f[i][j]=(f[i][j]+c[j-i][k-i]*fac[k-i-1]%mod*fac[j-k-1]%mod*(clc(k+1,j)*(k-i)%mod-clc(i,k-1)*(j-k)%mod+mod)%mod)%mod;
}
return (f[1][n]+mod)%mod;
}
};

TopCoder 14084 BearPermutations2【笛卡尔树+dp】的更多相关文章

  1. bzoj2616: SPOJ PERIODNI——笛卡尔树+DP

    不连续的处理很麻烦 导致序列DP又找不到优秀的子问题 自底向上考虑? 建立小根堆笛卡尔树 每个点的意义是:高度是(自己-father)的横着的极大矩形 子问题具有递归的优秀性质 f[i][j]i为根子 ...

  2. BZOJ2616 SPOJ PERIODNI(笛卡尔树 + DP)

    题意 N,K≤500,h[i]≤106N,K\le 500,h[i]\le10^6N,K≤500,h[i]≤106 题解 建立出小根堆性质的笛卡尔树,于是每个节点可以代表一个矩形,其宽度为子树大小,高 ...

  3. 洛谷 P5044 - [IOI2018] meetings 会议(笛卡尔树+DP+线段树)

    洛谷题面传送门 一道笛卡尔树的 hot tea. 首先我们考虑一个非常 naive 的区间 DP:\(dp_{l,r}\) 表示区间 \([l,r]\) 的答案,那么我们考虑求出 \([l,r]\) ...

  4. NOIP2011pj表达式的值[树形DP 笛卡尔树 | 栈 表达式解析]

    题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式A⊕B × ...

  5. BZOJ.2616.SPOJ PERIODNI(笛卡尔树 树形DP)

    BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. ...

  6. BZOJ2616 SPOJ PERIODNI(笛卡尔树+树形dp)

    考虑建一棵小根堆笛卡尔树,即每次在当前区间中找到最小值,以最小值为界分割区间,由当前最小值所在位置向两边区间最小值所在位置连边,递归建树.那么该笛卡尔树中的一棵子树对应序列的一个连续区间,且根的权值是 ...

  7. bzoj 2616 SPOJ PERIODNI——笛卡尔树+树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2616 把相同高度的连续一段合成一个位置(可能不需要?),用前缀和维护宽度. 然后每次找区间里 ...

  8. 【BZOJ2616】SPOJ PERIODNI 笛卡尔树+树形DP

    [BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output ...

  9. 51nod 1934 受限制的排列——笛卡尔树

    题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1934 根据给出的信息,可以递归地把笛卡尔树建出来.一个点只应该有 0/1/2 ...

随机推荐

  1. three supported reliability levels: * End-to-end * Store on failure * Best effort

    https://github.com/cloudera/flume/blob/master/flume-docs/src/docs/UserGuide/Introduction === Reliabi ...

  2. NOIP考前感悟

    闭关这么久,后来突然后悔自己前几天和暑假的状态很頽 不然进步也还能多一点吧 还好提前发现了,最后也还是努力了一把 也算不枉费自己的选择吧 从初中开始学习OI,到头来也没有什么成果 但还好自己高一 也还 ...

  3. ./autogen.sh: 4: autoreconf: not found

    ./autogen.sh: 4: autoreconf: not found  是在不同版本的 tslib 下执行 autogen.sh 产生.它们产生的原因一样,是因为没有安装  automake ...

  4. hadoop内存分配方案

    Configuration File   Configuration Setting Value Calculation        8G VM (4G For MR)    yarn-site.x ...

  5. PGTM通用性能测试模型

    PTGM通用性能测试模型 一.      测试前期准备阶段 目标: 1. 保证系统稳定性: 2. 建立合适的测试团队. 活动: 1.    系统基础功能验证 类似于BVT测试,确保被测系统已具备进行性 ...

  6. http://www.cnblogs.com/yaozhenfa/archive/2015/06/14/4574898.html

    笔者这里采用的是mongoDB官网推荐使用.net驱动: http://mongodb.github.io/mongo-csharp-driver/2.0/getting_started/quick_ ...

  7. CKEDITOR 默认最大化

    createEditor("newsEditer"); //创建一个editer //editer 最大化 CKEDITOR.instances["newsEditer& ...

  8. 机器学习 : 高斯混合模型及EM算法

    Mixtures of Gaussian 这一讲,我们讨论利用EM (Expectation-Maximization)做概率密度的估计.假设我们有一组训练样本x(1),x(2),...x(m),因为 ...

  9. Java中String args[]起什么作用?

    在百度知道上看到这样一个答案: 在命令提示符中运行该程序时 可以附加参数运行 输入的参数会存入到字符传数组 args[]中例如:在命令提示符中运行该程序的时候假设该程序在D的JAVA文件夹中D:JAV ...

  10. Asterisk func group

    Synopsis Gets, sets or clears the channel group. Each channel can only be member of exactly one grou ...