Codeforces 1139D(期望dp)
题意是模拟一个循环,一开始有一个空序列,之后每次循环:
1.从1到m中随机选出一个数字添加进去,每个数字被选的概率相同。
2.检查这个序列的gcd是否为1,如果为1则停止,若否则重复1操作直至gcd为1为止。
求这个序列的长度期望。
也是花了一晚上学习了一下期望dp。
设dp[i]表示当前gcd为i,到gcd为1时添加的元素个数期望。
然后就是传统的期望dp模型了:
dp[i]=∑p[i→j]dp[j]+w[i→j]
此处w为1,因为每次是添加1个元素
初始化状态dp[1]=0,因为当gcd为1的时候已经无法再添加元素
状态转移就是枚举i的因数j,然后计算1到m中有多少个数字x使得gcd(x,i)=j,设个数为tp,另一方面,还要计算有多少个数字y使得gcd(y,i)=i,设个数为z,从而有:
z=m/i(此处除法为向下取整)
dp[i]=z/m*dp[i]+Σ(tp/m*dp[j])+1 (此处的除法为取模意义下的除法,即乘以逆元)
也就是
dp[i]=(Σ(tp/m*dp[j])+1)*m/(m-z) (除法意义同上)
最后,由于起点并未明确确定,此处要手动设定起点,对于每个起点,都有1/m的概率选到,所以答案就是
1+Σdp[i]/m (取模下除法)
至于求tp,就是对x/i这个数字质因数分解之后容斥定理求个数,由于本人手残这部分写挂了好几次,终于也是在千辛万苦之后才写对
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod=1e9+;
ll q_p(ll a,ll b)
{
ll ans=;
while(b)
{
if(b&)
{
ans*=a;
ans%=mod;
}
b>>=;
a*=a;
a%=mod;
}
return ans;
}
ll inv(ll x)
{
return q_p(x,mod-);
} ll ret;
vector<ll>vec;
void dfs(ll idx,ll dep,ll lim,ll num,ll tmp)
{
if(num>) return;
if(dep==lim)
{
if(lim%)
ret+=tmp/num;
else
ret-=tmp/num;
return;
}
if(idx>=vec.size()) return;
dfs(idx+,dep+,lim,num*vec[idx],tmp);
dfs(idx+,dep,lim,num,tmp);
} bool vis[];
ll calc(ll x,ll k,ll n)
{
ll tmp=n/k;
ll tt=x/k;
for(ll i=;;i++)
{
while(tt%i==)
{
if(!vis[i]) vec.push_back(i),vis[i]=;
tt/=i;
}
if(i>sqrt(tt)) i=tt-;
if(tt==) break;
}
ret=;
for(int i=;i<=vec.size();i++)
dfs(,,i,,tmp);
for(int i=;i<vec.size();i++) vis[vec[i]]=;
vec.clear();
return tmp-ret;
} ll dp[];
int main()
{
#ifdef amori
clock_t start = clock();
#endif //amori ll m;
cin>>m;
dp[]=;
ll invm=inv(m);
for(ll i=;i<=m;i++)
{
dp[i]=;
for(ll j=;j<=sqrt(i);j++)
{
if(i%j==)
{
//cout<<i<<" "<<j<<" "<<calc(i,j,m)<<" "<<calc(i,i/j,m)<<endl;
dp[i]+=dp[j]*invm%mod*calc(i,j,m);
dp[i]%=mod;
if(j!= && i!=j*j)
{
dp[i]+=dp[i/j]*invm%mod*calc(i,i/j,m);
dp[i]%=mod;
}
}
}
ll tp=m/i;
dp[i]=dp[i]*m%mod*inv(m-tp);
dp[i]%=mod;
}
ll sum=;
for(int i=;i<=m;i++)
{
sum+=dp[i];
sum%=mod;
}
cout<<sum*invm%mod+<<endl; #ifdef amori
clock_t end = clock();
cout<<"Done in "<<end-start<<"ms"<<endl;
#endif // amori
}
是不是写的很烂,写的很烂就对了
别人构造级数求和一下就过了,本蒟蒻还在搞期望dp,顶不住鸭。
Codeforces 1139D(期望dp)的更多相关文章
- Codeforces - 1264C - Beautiful Mirrors with queries - 概率期望dp
一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\ ...
- [Codeforces 865C]Gotta Go Fast(期望dp+二分答案)
[Codeforces 865C]Gotta Go Fast(期望dp+二分答案) 题面 一个游戏一共有n个关卡,对于第i关,用a[i]时间通过的概率为p[i],用b[i]通过的时间为1-p[i],每 ...
- [Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT)
[Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT) 题面 给出一个\(n\)个点\(m\)条边的有向图(可能有环),走每条边需要支付一个价格\(c_i ...
- Codeforces 908 D.New Year and Arbitrary Arrangement (概率&期望DP)
题目链接:New Year and Arbitrary Arrangement 题意: 有一个ab字符串,初始为空. 用Pa/(Pa+Pb)的概率在末尾添加字母a,有 Pb/(Pa+Pb)的概率在末尾 ...
- 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP
[题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...
- 【算法学习笔记】概率与期望DP
本文学习自 Sengxian 学长的博客 之前也在CF上写了一些概率DP的题并做过总结 建议阅读完本文再去接着阅读这篇文章:Here 前言 单纯只用到概率的题并不是很多,从现有的 OI/ACM 比赛中 ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
随机推荐
- COGS 201. [BYVoid S1] 埃雷萨拉斯的宝藏
★★ 输入文件:eldrethalas.in 输出文件:eldrethalas.out 简单对比时间限制:1 s 内存限制:256 MB 问题描述 一万两千年前,精灵还是在艾萨拉女王的 ...
- 如何在InstallShield的MSI工程中调用Merge Module的Custom Action
使用InstallShield创建了合并模块安装程序,定义自定义活动,可如何调用却不太清楚,网上也就找到这点信息,还是没有成功,到底该在什么地方执行合并模块的自定义活动? http://1662487 ...
- myeclipse引入工程后运行出错
An internal error occurred during: Launching efax on Tomcat 7.x . 项目运行时报错 因为你项目建的时候用的是Tomcat5.x 服务器 ...
- .net reflector 的缺陷
.net reflector是一个反编译DLL的工具,在安装后如果电脑上有VS也会同时安装到VS里面,但是他是收费的,虽然反编译的效果很好,但是运行VS2013时(或许其他版本也有这样的问题)如果项目 ...
- NOIP2018提高组Day1 解题报告
前言 关于\(NOIP2018\),详见此博客:NOIP2018学军中学游记(11.09~11.11). 这次\(NOIP\ Day1\)的题目听说很简单(毕竟是三道原题),然而我\(T3\)依然悲剧 ...
- vuejs计算属性和侦听器
<div id='root'> 姓:<input v-model='firstName'/> 名:<input v-model='secondName'/> < ...
- 快速开发一个PHP扩展
快速开发一个PHP扩展 作者:heiyeluren时间:2008-12-5博客:http://blog.csdn.net/heiyeshuwu 本文通过非常快速的方式讲解了如何制作一个PHP 5.2 ...
- Count Numbers(矩阵快速幂)
Count Numbers 时间限制: 8 Sec 内存限制: 128 MB提交: 43 解决: 19[提交] [状态] [讨论版] [命题人:admin] 题目描述 Now Alice want ...
- 阿里云服务器下安装LAMP环境(CentOS Linux 6.3) 安装与配置 php
下面我们一起为服务器安装 PHP,在使用 yum 安装软件包的时候,yum 会去默认的资源库里查看我们要安装的软件包,然后到指定的服务器上下载并安装. 但是有的时候,我们要安装的软件包并没有包含在默认 ...
- Excel自动从身份证中提取生日、性别、年龄
现在学生的身份证号已经全部都是18位的新一代身份证了,里面的数字都是有规律的.前6位数字是户籍所在地的代码,7-14位就是出生日期.第17位“2”代表的是性别,偶数为女性,奇数为男性.我们要做的就是把 ...