EM算法简易推导
EM算法推导
网上和书上有关于EM算法的推导,都比较复杂,不便于记忆,这里给出一个更加简短的推导,用于备忘。
在不包含隐变量的情况下,我们求最大似然的时候只需要进行求导使导函数等于0,求出参数即可。但是包含隐变量,直接求导就变得异常复杂,此时需要EM算法,首先求出隐变量的期望值(E步),然后,把隐变量当中常数,按照不包含隐变量的求解最大似然的方法解出参数(M步),反复迭代,最终收敛到局部最优。下面给出EM算法的推导
我们有对数似然函数
\[
L(\theta)=\log P(y|\theta) = \log\sum_zp(y,z|\theta)
\]
可以表示成包含隐变量\(z\)的形式,然后通过边缘化再消除\(z\),效果是一样的。
由于是迭代,我们需要每次得到的新的似然结果比上一次的似然结果要大,于是我们的目标是下式
\[
\theta = \arg\max_\theta L(\theta) - L(\theta')
\]
由于$L(\theta') $ 是常量,所以,使得\(L(\theta)\)最大化即可。下面看看如何最大化 \(L(\theta)\) :
\[
\begin{split}
\theta &= \arg\max_\theta L(\theta)\\
&= \arg\max_\theta \log\sum_zp(y,z|\theta)\\
&= \arg\max_\theta \log\sum_zp(z|y, \theta')\dfrac{p(y, z|\theta)}{p(z|y, \theta')}\\
&= \arg\max_\theta \sum_zp(z|y,\theta')\log\dfrac{p(y,z|
\theta)}{p(z|y,\theta')}\\
&= \arg\max_\theta\sum_zp(z|y,\theta')\log(p(y, z|\theta))\\
&= \arg\max_\theta Q(\theta, \theta')
\end{split}
\]
至此,得到传说中的Q函数,然后求解出参数\(\theta\)即可
EM算法简易推导的更多相关文章
- 【机器学习】EM算法详细推导和讲解
今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的 ...
- EM算法以及推导
EM算法 Jensen不等式 其实Jensen不等式正是我们熟知的convex函数和concave函数性质,对于convex函数,有 \[ \lambda f(x) + (1-\lambda)f(y) ...
- EM算法-完整推导
前篇已经对EM过程,举了扔硬币和高斯分布等案例来直观认识了, 目标是参数估计, 分为 E-step 和 M-step, 不断循环, 直到收敛则求出了近似的估计参数, 不多说了, 本篇不说栗子, 直接来 ...
- Machine Learning系列--EM算法理解与推导
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算 ...
- EM算法理论与推导
EM算法(Expectation-maximization),又称最大期望算法,是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计(或极大后验概率估计) 从定义可知,该算法是用来估计参数的,这 ...
- EM算法(Expectation Maximization Algorithm)初探
1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b: ...
- EM算法
EM算法的推导
- 猪猪的机器学习笔记(十四)EM算法
EM算法 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大 ...
- EM算法原理总结
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断等等.本文就对 ...
随机推荐
- dos 删除文件夹 rd
windows普通方法删除不了文件.文件夹?那么试试dos命令吧. rd的另外一个写法是rmdir,源自ReMakeDirectory.使用的方法也很简单:rd 文件夹名 即可,例如:rd test. ...
- django之分页插件
from django.utils.safestring import mark_safe class Page: def __init__(self, current_page, data_coun ...
- 2017.10.5 QBXT 模拟赛
题目链接 T1 从小到大排序,用sum记录前缀和,然后枚举1~n个数 ,如果当前的前缀和 + 1小于a[i]的话 那么 sum + 1永远不可能拼出来 直接输出sum + 1 ,否则统计前缀和.最后如 ...
- python爬虫之路——Python的re模块及其方法
介绍常用的三种方法:search(),sub(),findall() search():匹配并提取第一个符合规律的内容,然后返回一个正则表达式的对象 #提取字符串中的第一个数字 import re a ...
- DDOS介绍
DDOS: Data Domain Operating System(DD OS),即数据域操作系统----管理EMC的数据域拷贝存储系统(powers EMC Data Domain dedupli ...
- spring security 2.x HttpSessionEventPublisher 以及listener配置
在环境为spring security2.x时 *JDK6 spring 2* 正确的filter路径是:org.springframework.security.ui.session.HttpSes ...
- cv2.minAreaRect() 生成最小外接矩形
简介 使用python opencv返回点集cnt的最小外接矩形,所用函数为 cv2.minAreaRect(cnt) ,cnt是所要求最小外接矩形的点集数组或向量,这个点集不定个数. cv2 ...
- 【转载】Alpha、Beta、RC、GA版本的区别
转自:http://www.blogjava.net/RomulusW/archive/2008/05/04/197985.html Alpha:是内部测试版,一般不向外部发布,会有很多Bug.一般只 ...
- Python——函数入门(一)
一.理解函数 举一个例子,当我们需要重复使用一个功能的时候,不可能每次都去复制一次代码,这个时候就需要用到函数了,所谓的函数,简单来说就是给函数取一个名字,当需要用到这个功能的时候,就可以通过这个名字 ...
- Vue和MVVM对应关系
Vue和MVVM的对应关系 Vue是受MVVM启发的,那么有哪些相同之处呢?以及对应关系? MVVM(Model-view-viewmodel) MVVM还有一种模式model-view-binder ...