Project Euler:Problem 41 Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime.
What is the largest n-digit pandigital prime that exists?
#include <iostream>
#include <string>
using namespace std; int res = 0; bool prim(int a)
{
for (int i = 2; i*i <= a; i++)
{
if (a%i == 0)
return false;
}
return true;
} void perm(int list[], int n, int k)
{
int temp1, temp2;
if (n == 1)
{
int sum = 0;
for (int i = k; i > 0; i--)
sum = sum * 10 + list[i];
if (prim(sum)&&sum > res)
res = sum;
}
else
for (int i = 1; i <= n; i++)
{ temp1 = list[i];
list[i] = list[n];
list[n] = temp1; perm(list, n - 1, k); temp2 = list[i];
list[i] = list[n];
list[n] = temp2;
} } int main()
{
for (int j = 9; j >= 1; j--)
{
int list[200];
for (int i = 1; i <= j; i++)
list[i] = i;
perm(list, j, j);
}
cout << res << endl;
system("pause"); return 0;
}
Project Euler:Problem 41 Pandigital prime的更多相关文章
- Project Euler:Problem 32 Pandigital products
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- Project Euler:Problem 87 Prime power triples
The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...
- Project Euler:Problem 77 Prime summations
It is possible to write ten as the sum of primes in exactly five different ways: 7 + 3 5 + 5 5 + 3 + ...
- Project Euler:Problem 58 Spiral primes
Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length ...
- Project Euler:Problem 55 Lychrel numbers
If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindr ...
- Project Euler:Problem 47 Distinct primes factors
The first two consecutive numbers to have two distinct prime factors are: 14 = 2 × 7 15 = 3 × 5 The ...
- Project Euler:Problem 63 Powerful digit counts
The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is ...
- Project Euler:Problem 86 Cuboid route
A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3, and a fly, F, sits in the o ...
- Project Euler:Problem 76 Counting summations
It is possible to write five as a sum in exactly six different ways: 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 ...
随机推荐
- Delphi 半透明窗体,窗体以及控件透明度
很简单了 现在,适用所有控件和窗体: delphi设置窗口透明 form1.AlphaBlend :=true; //透明form1.AlphaBlendValue :=180; //透明度form1 ...
- 树的直径新求法、codeforces 690C3 Brain Network (hard)
树的直径新求法 讲解题目 今天考了一道题目,下面的思路二是我在考场上原创,好像没人想到这种做法,最原始的题目,考场上的题目是这样的: 你现在有1 个节点,他的标号为1,每次加入一个节点,第i 次加入的 ...
- codevs——2853 方格游戏(棋盘DP)
时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 菜菜看到了一个游戏,叫做方格游戏~ 游戏规则是这样的: 在一个n*n的 ...
- 洛谷——1968 美元汇率(DP)
题目背景 此处省略maxint+1个数 题目描述 在以后的若干天里戴维将学习美元与德国马克的汇率.编写程序帮助戴维何时应买或卖马克或美元,使他从100美元开始,最后能获得最高可能的价值. 输入输出格式 ...
- 2016集训测试赛(十八)Problem C: 集串雷 既分数规划学习笔记
Solution 分数规划经典题. 话说我怎么老是忘记分数规划怎么做呀... 所以这里就大概写一下分数规划咯: 分数规划解决的是这样一类问题: 有\(a_1, a_2 ... a_n\)和\(b_1, ...
- 线程安全的单例模式还需要对成员变量的set get方法设置锁么
不需要,线程安全的单例模式,在获得对象时已经加锁了,保证每时每刻只有一个线程获得此单例对象.所以不需要再上锁了啊
- Learn How To Attach PL/SQL Library In Oracle Forms
To attach a PL/SQL library in the Oracle Forms follow the following steps:1. Click on Attached Libra ...
- android(cm11)状态栏源代码分析(一)
(一):写在前面 近期因为工作须要,须要了解CM11中的有关于StatusBar相关的内容.总的来说,刚開始阅读其源代码的时候,是有点困难,只是通过构建相关代码的脑图和流程图,几天下来.我已经对其源代 ...
- js 选项卡封装
function tab(input,div){ for(var i = 0; i < input.length; i++){ input[i].index = i; input[i].oncl ...
- vue2.X 自定义 侧滑菜单 组件
1.vue2.0 封装 侧滑菜单组件 Sidebar.vue <!-- 侧滑菜单 组件 --> <template> <div> <transition na ...