Codeforces 1108F MST Unification MST + LCA
Codeforces 1108F MST + LCA
F. MST Unification
Description:
You are given an undirected weighted connected graph with \(n\) vertices and \(m\) edges without loops and multiple edges.
The \(i\)-th edge is \(e_i = (u_i, v_i, w_i)\); the distance between vertices \(u_i\) and \(v_i\) along the edge \(e_i\) is \(w_i\) (\(1 \le w_i\)). The graph is connected, i. e. for any pair of vertices, there is at least one path between them consisting only of edges of the given graph.
A minimum spanning tree (MST) in case of positive weights is a subset of the edges of a connected weighted undirected graph that connects all the vertices together and has minimum total cost among all such subsets (total cost is the sum of costs of chosen edges).
You can modify the given graph. The only operation you can perform is the following: increase the weight of some edge by \(1\). You can increase the weight of each edge multiple (possibly, zero) times.
Suppose that the initial MST cost is \(k\). Your problem is to increase weights of some edges with minimum possible number of operations in such a way that the cost of MST in the obtained graph remains \(k\), but MST is unique (it means that there is only one way to choose MST in the obtained graph).
Your problem is to calculate the minimum number of operations required to do it.
Input:
The first line of the input contains two integers \(n\) and \(m\) (\(1 \le n \le 2 \cdot 10^5, n - 1 \le m \le 2 \cdot 10^5\)) — the number of vertices and the number of edges in the initial graph.
The next \(m\) lines contain three integers each. The \(i\)-th line contains the description of the \(i\)-th edge \(e_i\). It is denoted by three integers \(u_i, v_i\) and \(w_i\) (\(1 \le u_i, v_i \le n, u_i \ne v_i, 1 \le w \le 10^9\)), where \(u_i\) and \(v_i\) are vertices connected by the \(i\)-th edge and \(w_i\) is the weight of this edge.
It is guaranteed that the given graph doesn't contain loops and multiple edges (i.e. for each \(i\) from \(1\) to \(m\) \(u_i \ne v_i\) and for each unordered pair of vertices \((u, v)\) there is at most one edge connecting this pair of vertices). It is also guaranteed that the given graph is connected.
Output
Print one integer — the minimum number of operations to unify MST of the initial graph without changing the cost of MST.
Sample Input:
8 10
1 2 1
2 3 2
2 4 5
1 4 2
6 3 3
6 1 3
3 5 2
3 7 1
4 8 1
6 2 4
Sample Output:
1
Sample Input:
4 3
2 1 3
4 3 4
2 4 1
Sample Output:
0
Sample Input:
3 3
1 2 1
2 3 2
1 3 3
Sample Output:
0
Sample Input:
3 3
1 2 1
2 3 3
1 3 3
Sample Output:
1
Sample Input:
1 0
Sample Output:
0
Sample Input:
5 6
1 2 2
2 3 1
4 5 3
2 4 2
1 4 2
1 5 3
Sample Output:
2
题目链接
题解:
你有一个图,你可以增加某些边的边权使得这张图的最小生成树变成唯一的并保持最小生成树权值和不变,要求最小化边权增加量
我的做法:首先随便找一个最小生成树,然后考虑非树边\((x, y, val)\), 如果\(x到y\)的最小生成树上唯一路径的边权最大值等于\(val\),那么这条非树边的边权要增加\(1\), 因为这条边会导致非唯一的最小生成树,然后我就写了个树链剖分......总复杂度\(O(mlogm + m log^2n)\), 但是这道题没有修改,根本用不着树链剖分,只要倍增LCA的时候顺便用一个东西记录路径最大值就好了,我凭空多了一个\(log\),跑了\(400ms\)
题解的做法:考虑跑\(kruskal\)的过程,一次考虑所有边权相同的边,去除那些连接了两个已联通点的边,剩下的边一个个加入,加入失败的边的数量贡献到答案里,复杂度\(O(mlogm)\),而且很短,很快,只要\(100ms\)
我的做法AC代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
int head[N], pnt[N << 1], nxt[N << 1], val[N << 1], cnt;
map<int, int> vis[N];
int dep[N], dfn[N], top[N], fa[N], son[N], rnk[N], size[N], clk;
int mx[N << 2];
struct edge {
int x, y, v;
bool operator<(const edge &rhs) const {
return v < rhs.v;
}
void adjust() {
if(dep[x] > dep[y])
swap(x, y);
}
}seg[N];
int dsu[N];
int n, m, ans;
void add(int x, int y, int v) {
pnt[cnt] = y;
val[cnt] = v;
nxt[cnt] = head[x];
head[x] = cnt++;
}
int find(int x) {
return dsu[x] == x ? x : dsu[x] = find(dsu[x]);
}
void unite(int x, int y) {
int fx = find(x), fy = find(y);
if(fx != fy)
dsu[fx] = fy;
}
int kruskal() {
int res = 0;
sort(seg + 1, seg + m + 1);
for(int i = 1; i <= n; ++i)
dsu[i] = i;
for(int i = 1; i <= m; ++i) {
if(find(seg[i].x) == find(seg[i].y)) continue;
vis[seg[i].x][seg[i].y] = 1;
vis[seg[i].y][seg[i].x] = 1;
unite(seg[i].x, seg[i].y);
res += seg[i].v;
}
return res;
}
void dfs1(int rt, int pre, int depth) {
dep[rt] = depth;
son[rt] = -1;
size[rt] = 1;
fa[rt] = pre;
for(int i = head[rt]; ~i; i = nxt[i]) {
int j = pnt[i];
if(j == pre) continue;
if(!vis[rt].count(j)) continue;
dfs1(j, rt, depth + 1);
size[rt] += size[j];
if(son[rt] == -1 || size[j] > size[son[rt]])
son[rt] = j;
}
}
void dfs2(int rt, int t) {
top[rt] = t;
dfn[rt] = clk;
rnk[clk] = rt;
clk++;
if(son[rt] == -1)
return;
dfs2(son[rt], t);
for(int i = head[rt]; ~i; i = nxt[i]) {
int j = pnt[i];
if(j == fa[rt] || j == son[rt]) continue;
if(!vis[rt].count(j)) continue;
dfs2(j, j);
}
}
void pushup(int rt) {
mx[rt] = max(mx[rt << 1], mx[rt << 1 | 1]);
}
void build(int rt, int l, int r) {
mx[rt] = 0;
if(l == r)
return;
int mid = l + r >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
}
void update(int rt, int l, int r, int pos, int val) {
if(l == r) {
mx[rt] = val;
return;
}
int mid = l + r >> 1;
if(pos <= mid)
update(rt << 1, l, mid, pos, val);
else
update(rt << 1 | 1, mid + 1, r, pos, val);
pushup(rt);
}
int query(int rt, int l, int r, int L, int R) {
if(L <= l && r <= R)
return mx[rt];
int mid = l + r >> 1, ans = 0;
if(L <= mid)
ans = max(ans, query(rt << 1, l, mid, L, R));
if(mid < R)
ans = max(ans, query(rt << 1 | 1, mid + 1, r, L, R));
return ans;
}
int ask(int a, int b) {
int ans = 0, ta = top[a], tb = top[b];
while(ta != tb) {
if(dep[ta] < dep[tb])
swap(ta, tb), swap(a, b);
ans = max(ans, query(1, 1, n, dfn[ta], dfn[a]));
a = fa[ta];
ta = top[a];
}
if(a == b) return ans;
if(dep[a] > dep[b]) swap(a, b);
return max(ans, query(1, 1, n, dfn[son[a]], dfn[b]));
}
void input() {
memset(head, -1, sizeof(head));
scanf("%d%d", &n, &m);
for(int i = 1; i <= m; ++i) {
scanf("%d%d%d", &seg[i].x, &seg[i].y, &seg[i].v);
add(seg[i].x, seg[i].y, seg[i].v);
add(seg[i].y, seg[i].x, seg[i].v);
}
}
void init() {
clk = 1;
kruskal();
dfs1(1, 1, 0);
dfs2(1, 1);
build(1, 1, n);
for(int i = 1; i <= m; ++i) {
if(!vis[seg[i].x].count(seg[i].y)) continue;
seg[i].adjust();
update(1, 1, n, dfn[seg[i].y], seg[i].v);
}
}
int solve() {
for(int i = 1; i <= m; ++i) {
if(vis[seg[i].x].count(seg[i].y)) continue;
ans += seg[i].v == ask(seg[i].x, seg[i].y);
}
return ans;
}
int main() {
input();
init();
printf("%d\n", solve());
return 0;
}
题解做法AC代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
struct e {
int x, y, v;
bool operator<(const e &rhs) const {
return v < rhs.v;
}
}edges[N];
int dsu[N], n, m, ans, cnt;
int find(int x) {
return x == dsu[x] ? x : dsu[x] = find(dsu[x]);
}
bool unite(int x, int y) {
int fx = find(x), fy = find(y);
if(fx == fy)
return false;
dsu[fx] = fy;
return true;
}
int main() {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i)
dsu[i] = i;
for(int i = 1; i <= m; ++i)
scanf("%d%d%d", &edges[i].x, &edges[i].y, &edges[i].v);
sort(edges + 1, edges + m + 1);
int j = 1;
for(int i = 1; i <= m; ++i) {
j = i + 1;
while(j <= m && edges[j].v == edges[i].v)
++j;
cnt = j - i;
for(int k = i; k < j; ++k)
if(find(edges[k].x) == find(edges[k].y))
--cnt;
for(int k = i; k < j; ++k)
cnt -= unite(edges[k].x, edges[k].y);
ans += cnt;
i = j - 1;
}
printf("%d\n", ans);
return 0;
}
Codeforces 1108F MST Unification MST + LCA的更多相关文章
- Codeforces 1108F MST Unification(最小生成树性质)
题目链接:MST Unification 题意:给定一张连通的无向带权图.存在给边权加一的操作,求最少操作数,使得最小生成树唯一. 题解:最小生成树在算法导论中有这个性质: 把一个连通无向图的生成树边 ...
- CF1108F MST Unification
题目地址:CF1108F MST Unification 最小生成树kruskal算法的应用 只需要在算法上改一点点 当扫描到权值为 \(val\) 的边时,我们将所有权值为 \(val\) 的边分为 ...
- Codeforces 1108F (MST Unification) (树上倍增 or 改进 kruksal)
题意:给你一张n个节点和m条边的无向连通图, 你可以执行很多次操作,对某一条边的权值+1(对于每条边,可以不加,可以无限次加),问至少进行多少次操作,可以使这张图的最小生成树变得唯一,并且最小生成树的 ...
- MST Unification CodeForces - 1108F
#include<iostream> #include<cstring> #include<algorithm> using namespace std; ; in ...
- Codeforces 196E Opening Portals MST (看题解)
Opening Portals 我们先考虑如果所有点都是特殊点, 那么就是对整个图求个MST. 想在如果不是所有点是特殊点的话, 我们能不能也 转换成求MST的问题呢? 相当于我们把特殊点扣出来, 然 ...
- Codeforces 160D Edges in MST tarjan找桥
Edges in MST 在用克鲁斯卡尔求MST的时候, 每个权值的边分为一类, 然后将每类的图建出来, 那些桥就是必须有的, 不是桥就不是必须有. #include<bits/stdc++.h ...
- CF F. MST Unification (最小生成树避圈法)
题意 给一个无向加权联通图,没有重边和环.在这个图中可能存在多个最小生成树(MST),你可以进行以下操作:选择某条边使其权值加一,使得MST权值不变且唯一.求最少的操作次数. 分系:首先我们先要知道为 ...
- (F. MST Unification)最小生成树
题目链接:http://codeforces.com/contest/1108/problem/F 题目大意:给你n个点和m条边,然后让你进行一些操作使得这个图的最小生成树唯一,每次的操作是给某一条边 ...
- 【春训团队赛第四场】补题 | MST上倍增 | LCA | DAG上最长路 | 思维 | 素数筛 | 找规律 | 计几 | 背包 | 并查集
春训团队赛第四场 ID A B C D E F G H I J K L M AC O O O O O O O O O 补题 ? ? O O 传送门 题目链接(CF Gym102021) 题解链接(pd ...
随机推荐
- Qt在线讲座之QML脚本书写规范
时间:2016年3月1日晚7:30 在线讲座:http://qtdream.com主页处就可以收看直播(详见主页提示) 參与对象:对Qt跨平台开发框架感兴趣的朋友们.当然了,假设你是大牛.也可以旁听一 ...
- Django-中介模型
有多对多字段的时候自己创建的第三章表就是中介模型 class Article(models.Model): ''' 文章表 ''' title = models.CharField(max_lengt ...
- LeetCode算法题目解答汇总(转自四火的唠叨)
LeetCode算法题目解答汇总 本文转自<四火的唠叨> 只要不是特别忙或者特别不方便,最近一直保持着每天做几道算法题的规律,到后来随着难度的增加,每天做的题目越来越少.我的初衷就是练习, ...
- echart地图下钻
需求:展示中国地图,鼠标点击显示对应的省份 在echart的github上下载需要的 地图文件China.js,各个省份的json文件 遇到的问题:直接在浏览器打开报错,跨域问题,用webstrom打 ...
- Asp.net mvc4 快速入门之构建表单
1.asp.net mvc4 Index.cshtml页面上构建表单form的方式 @{ ViewBag.Title = "Index"; Layout = "~/Vi ...
- a little riak book
a little riak book 的无聊总结 <pre name="code" class="python">#!/bin/bash # Ria ...
- HP叫魔术方法的函数
PHP5.0后,php面向对象提成更多方法,使得php更加的强大!! 一些在PHP叫魔术方法的函数,在这里介绍一下:其实在一般的应用中,我们都需要用到他们!! 1.__construct() 当实例化 ...
- php递归循环地区
$mylist = array( array( 'area_parent_id'=>0,'id'=>1,'area_name' => '河北',), array( 'area_par ...
- linux下环境搭建
1.jdk https://ivan-site.com/2012/05/download-oracle-java-jre-jdk-using-a-script/ 在linux用wget直接下载JDK ...
- HDU3723 Delta Wave —— 卡特兰数
题目链接:https://vjudge.net/problem/HDU-3723 Delta Wave Time Limit: 6000/3000 MS (Java/Others) Memory ...