loj6485 LJJ 学二项式定理
题目描述:
题解:
单位根反演。
$[n|x]=\frac{1}{n} \sum _{i=0}^{n-1} (ω_n^x)^i$
证明?显然啊,要么停在$(1,0)$要么转一圈。
所以说题目要求的是$\sum _{i=0}^{n} C(n,i) * s^i * a_{i\;mod\;4}$
把$a$提前,变成$\sum_{k=0}^{3}a_k \sum _{i=0} ^{n} C(n,i) *s^i [4|i-k]$
然后把上面单位根反演式子套进去。后面变成$\sum _{i=0} ^n C(n,i) * s^i * \frac{1}{4} \sum _{j=0} ^{3} (ω_4 ^{i-1})^j$
把后面提前面:$\frac{1}{4} \sum_{j=0}^3 ω_4^{-j} \sum_{i=0}^{n} C(n,i)*s^i*ω_4^{ij}$
发现二项式定理:$\frac{1}{4} \sum_{j=0}^3 ω_4^{-j} * (sω_4^j+1)^n$
最后就剩快速幂了?
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MOD = ;
template<typename T>
inline void read(T&x)
{
T f = ,c = ;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){c=c*+ch-'';ch=getchar();}
x = f*c;
}
ll fastpow(ll x,ll y)
{
ll ret = ;
while(y)
{
if(y&)ret=ret*x%MOD;
x=x*x%MOD;y>>=;
}
return ret;
}
int T;
ll n,s,a0,a1,a2,a3,w0,w1,w2,w3,W0,W1,W2,W3,ans,inv;
void work()
{
read(n),read(s),read(a0),read(a1),read(a2),read(a3);n%=(MOD-),ans=;
W0 = fastpow(s*w0%MOD+,n),W1 = fastpow(s*w1%MOD+,n);
W2 = fastpow(s*w2%MOD+,n),W3 = fastpow(s*w3%MOD+,n);
ans=(ans+a0*(w0*W0%MOD+w0*W1%MOD+w0*W2%MOD+w0*W3%MOD)%MOD)%MOD;
ans=(ans+a1*(w0*W0%MOD+w3*W1%MOD+w2*W2%MOD+w1*W3%MOD)%MOD)%MOD;
ans=(ans+a2*(w0*W0%MOD+w2*W1%MOD+w0*W2%MOD+w2*W3%MOD)%MOD)%MOD;
ans=(ans+a3*(w0*W0%MOD+w1*W1%MOD+w2*W2%MOD+w3*W3%MOD)%MOD)%MOD;
printf("%lld\n",ans*inv%MOD);
}
int main()
{
// freopen("tt.in","r",stdin);
read(T);inv = fastpow(,MOD-);
w0=,w1=fastpow(,(MOD-)/),w2=w1*w1%MOD,w3=w1*w2%MOD;
while(T--)work();
return ;
}
loj6485 LJJ 学二项式定理的更多相关文章
- LOJ6485 LJJ 学二项式定理 解题报告
LJJ 学二项式定理 题意 \(T\)组数据,每组给定\(n,s,a_0,a_1,a_2,a_3\),求 \[ \sum_{i=0}^n \binom{n}{i}s^ia_{i\bmod 4} \] ...
- 【LOJ#6485】LJJ 学二项式定理(单位根反演)
[LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...
- loj #6485. LJJ 学二项式定理 (模板qwq)
$ \color{#0066ff}{ 题目描述 }$ LJJ 学完了二项式定理,发现这太简单了,于是他将二项式定理等号右边的式子修改了一下,代入了一定的值,并算出了答案. 但人口算毕竟会失误,他请来了 ...
- 题解 LOJ-6485 【LJJ学二项式定理】
题目 由于看到正解的单位根反演过于复杂 (也就是看不懂) 所以自己构造了一个算法,理论上这个算法应该还有成长的空间(可以变得普适性更强) 不知道和单位根反演有没有一样,就发表出来了 反正转载前记得要联 ...
- loj 6485 LJJ学二项式定理 —— 单位根反演
题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...
- LOJ #6485 LJJ 学二项式定理
QwQ LOJ #6485 题意 求题面中那个算式 题解 墙上暴利 设$ f(x)=(sx+1)^n$ 假设求出了生成函数$ f$的各项系数显然可以算出答案 因为模$ 4$的缘故只要对于每个余数算出次 ...
- LOJ 6485 LJJ 学二项式定理——单位根反演
题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i ...
- loj#6485. LJJ 学二项式定理(单位根反演)
题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...
- loj #6485. LJJ 学二项式定理 单位根反演
新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s". ...
随机推荐
- 【实验吧】该题不简单——writeup
题目地址:http://ctf5.shiyanbar.com/crack/3/ 一定要注意读题: 要求找出用户名为hello的注册码,这八成就是 要写注册机啊! ——————————————————— ...
- CentOS6.7 i686上安装JDK7
内核版本: [root@heima01 java]# uname -a Linux heima01 2.6.32-573.el6.i686 #1 SMP Thu Jul 23 12:37:35 UTC ...
- python之is 和 == 的区别//编码和解码
一.is 和 == 的区别: 1 .id() 内存地址 2. == 比较 #比较两边的值 3. is 比较 #比较的是内存地址 数字,字符串,有小数据池 #数字小 ...
- yii2.0下,JqPaginator与Pjax实现无刷新翻页
控制器部分 <?php namespace backend\controllers; use common\models\Common; use Yii; use yii\base\Contro ...
- CSS——制作天天生鲜登陆页面
这个登陆页面主要是有一个form表单,其他的和首页差不多的. login.html: <!DOCTYPE html> <html lang="en"> &l ...
- aix OPATH ISSUE
issue 1: OPatch cannot find a valid oraInst.loc file to locate Central Inventory (OPatch failed with ...
- 举例实用详解sc.textFile()和wholeTextFiles()
谈清楚区别,说明白道理,从案例开始: 1 数据准备 用hdfs存放数据,且结合的hue上传准备的数据,我的hue截图: 每个文件下的数据: 以上是3个文件的数据,每一行用英文下的空格隔开: 2 测试 ...
- Java编码优化
Java编码优化 1.尽可能使用局部变量 调用方法时传递的参数以及在调用中创建的临时变量都保存在栈中速度较快,其他变 量,如静态变量.实例变量等,都在堆中创建,速度较慢.另外,栈中创建的变量,随 着方 ...
- where whereis locate find 的用法
1.where :where ifconfig.用来搜索命令,显示命令是否存在以及路径在哪 2.whereis:whereis vim .用来搜索程序名,而且只搜索二进制文件(参数-b).man说明文 ...
- pageContext.setAttribute的使用场合
由于页面间跳转以后,pageScope域失效,所以,关于pageContext.setAttribute和pageContext.getAttribute的使用(pagecontext作用域是page ...