Comparing two numbers written in index form like 211 and 37 is not difficult, as any calculator would confirm that 211 = 2048 < 37 = 2187.

However, confirming that 632382518061 > 519432525806 would be much more difficult, as both numbers contain over three million digits.

Using base_exp.txt (right click and 'Save Link/Target As...'), a 22K text file containing one thousand lines with a base/exponent pair on each line, determine which line number has the greatest numerical value.

NOTE: The first two lines in the file represent the numbers in the example given above.

用对数做,转化成 n=y*ln x,n为10的指数。也就是比较以10 为底,对数值的大小。

C++中,ln写作log。

实现部分如下:

int n=log(x)*y;
if(max<n){
max=n;
ans=num;
} // ans= 709;

  

Project Euler:99 Largest exponential C++的更多相关文章

  1. Project Euler 99:Largest exponential 最大的幂

    Largest exponential Comparing two numbers written in index form like 211 and 37 is not difficult, as ...

  2. 【Project Euler 8】Largest product in a series

    题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...

  3. Project Euler:Problem 86 Cuboid route

    A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3, and a fly, F, sits in the o ...

  4. Project Euler:Problem 63 Powerful digit counts

    The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is ...

  5. Project Euler:Problem 76 Counting summations

    It is possible to write five as a sum in exactly six different ways: 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 ...

  6. Project Euler:Problem 87 Prime power triples

    The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...

  7. Project Euler:Problem 41 Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  8. Project Euler:Problem 61 Cyclical figurate numbers

    Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygon ...

  9. Project Euler:Problem 33 Digit cancelling fractions

    The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...

随机推荐

  1. Objective-C写出Json文件(可作配置文件)

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px "PingFang SC"; color: #008f00 } span. ...

  2. SpringMVC拦截器 - 设置不拦截html,js等静态文件

    拦截器中增加针对静态资源不进行过滤(涉及spring-mvc.xml) <mvc:resources location="/" mapping="/**/*.js& ...

  3. Hacking JWT(JSON Web Token)

    0x01 JWT工作流程 JSON Web Token(JWT)是一个非常轻巧的规范. 这个规范允许我们使用JWT在用户和服务器之间传递安全可靠的信息. JWT常被用于前后端分离,可以和Restful ...

  4. Spring(三)--AOP【面向切面编程】、通知类型及使用、切入点表达式

    1.概念:Aspect Oriented Programming 面向切面编程 在方法的前后添加方法   2.作用:本质上来说是一种简化代码的方式      继承机制      封装方法      动 ...

  5. web中转发、重定向等问题的路径

    web中常用路径,转发,重定向,form表单action的路径 路径的写法: a.绝对路径写法:ServeltContext都必须用绝对路径."/" b.相对路径:其他情况都可以使 ...

  6. poj2912 Rochambeau

    Description N children are playing Rochambeau (scissors-rock-cloth) game with you. One of them is th ...

  7. Java对象的创建

    学了很久的java,是时候来一波深入思考了.比如:对象是如何在JVM中创建,并且被使用的.本文主要讲解下new对象的创建过程.要想更深入的了解建议去认认真真的看几遍<深入理解Java虚拟机> ...

  8. python基础学习(十二)

    模块 前面有简单介绍如何使用import从外部模块获取函数并且为自己的程序所用: >>> import math >>> math.sin(0) #sin为正弦函数 ...

  9. (转载)深入Java关键字this的用法的总结

    在Java程序设计中经常会见到this的使用,this使得程序设计变得规范.简单.灵活.但是在使用过程中,在不同场 合它的含义并不完全相同,使用不当还会出现错误, 本文对this的几种用法和出现的问题 ...

  10. MySQL(三)之SQL语句分类、基本操作、三大范式

    一.SQL语句的分类     DML(Data Manipulation Langauge,数据操纵/管理语言) (insert,delete,update,select)     DDL(Data ...