Description

Input

第一行有两个整数,N和 M,描述方块的数目。 
接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个景点;
否则表示控制该方块至少需要的志愿者数目。 相邻的整数用 (若干个) 空格隔开,
行首行末也可能有多余的空格。

Output

由 N + 1行组成。第一行为一个整数,表示你所给出的方案
中安排的志愿者总数目。 
接下来 N行,每行M 个字符,描述方案中相应方块的情况: 
z  ‘_’(下划线)表示该方块没有安排志愿者; 
z  ‘o’(小写英文字母o)表示该方块安排了志愿者; 
z  ‘x’(小写英文字母x)表示该方块是一个景点; 
注:请注意输出格式要求,如果缺少某一行或者某一行的字符数目和要求不
一致(任何一行中,多余的空格都不允许出现) ,都可能导致该测试点不得分。

Sample Input

4 4
0 1 1 0
2 5 5 1
1 5 5 1
0 1 1 0

Sample Output

6
xoox
___o
___o
xoox
 
 
斯坦纳树……说白了就是把树形dp和状压dp一起搞……
 
#include<queue>
#include<cstdio>
#include<algorithm>
using namespace std; struct na{
int x,y,k;
na(){
x=-;
}
na(int xx,int yy,int kk):x(xx),y(yy),k(kk){}
};
int n,m,num=,y;
int map[][],bi[][];
int dp[][][(<<)+];
bool bo[][][(<<)+],mp[][];
na ro[][][(<<)+];
queue <na> q;
const int INF=1e8;
const int fx[]={,,,-},fy[]={,-,,};
inline void spfa(){
register int k,xx,yy,kk;
while(!q.empty()){
na no=q.front();
q.pop();
bo[no.x][no.y][no.k]=;
for (k=;k<;k++){
xx=no.x+fx[k];yy=no.y+fy[k];kk=no.k|bi[xx][yy];
if (xx<||yy<||xx>=n||yy>=m) continue;
if (dp[xx][yy][no.k|bi[xx][yy]]>dp[no.x][no.y][no.k]+map[xx][yy]){
dp[xx][yy][kk]=dp[no.x][no.y][no.k]+map[xx][yy];
ro[xx][yy][kk]=no;
if (!bo[xx][yy][kk]){
bo[xx][yy][kk]=;
q.push(na(xx,yy,kk));
}
}
}
}
}
inline void dfs(int x,int y,int k){
mp[x][y]=;
if (ro[x][y][k].x==-) return;
dfs(ro[x][y][k].x,ro[x][y][k].y,ro[x][y][k].k);
if (ro[x][y][k].x==x&&ro[x][y][k].y==y) dfs(x,y,(k^ro[x][y][k].k)|bi[x][y]);
}
int main(){
register int i,j,k,x;
scanf("%d%d",&n,&m);
for (i=;i<n;i++)
for (j=;j<m;j++){
scanf("%d",&map[i][j]);
if (!map[i][j]) bi[i][j]=<<num,num++;
}
for (i=;i<n;i++)
for (j=;j<m;j++)
for (k=;k<<<num;k++) dp[i][j][k]=(bi[i][j]&&(bi[i][j]==k))?:INF;
for (k=;k<<<num;k++){
for (i=;i<n;i++)
for (j=;j<m;j++){
if (bi[i][j]&&!(bi[i][j]&k)) continue;
for (x=k;x;x=(x-)&k){
y=dp[i][j][x|bi[i][j]]+dp[i][j][(k^x)|bi[i][j]]-map[i][j];
if (y<dp[i][j][k]) dp[i][j][k]=y,ro[i][j][k]=na(i,j,x|bi[i][j]);
}
if (dp[i][j][k]!=INF) q.push(na(i,j,k)),bo[i][j][k]=;
}
spfa();
}
k--;
for (i=;i<n;i++)
for (j=;j<m;j++)
if (bi[i][j]){
printf("%d\n",dp[i][j][k]);
na o=ro[i][j][k];
dfs(i,j,k);
for (int ii=;ii<n;ii++){
for (int jj=;jj<m;jj++)
if (map[ii][jj]==) printf("x");else
if (mp[ii][jj]) printf("o");else printf("_");
printf("\n");
}
return ;
}
}

bzoj:2595: [Wc2008]游览计划的更多相关文章

  1. bzoj 2595 [Wc2008]游览计划(斯坦纳树)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2595 [题意] 给定N*M的长方形,选最少权值和的格子使得要求的K个点连通. [科普] ...

  2. BZOJ 2595: [Wc2008]游览计划 [DP 状压 斯坦纳树 spfa]【学习笔记】

    传送门 题意:略 论文 <SPFA算法的优化及应用> http://www.cnblogs.com/lazycal/p/bzoj-2595.html 本题的核心就是求斯坦纳树: Stein ...

  3. BZOJ.2595.[WC2008]游览计划(DP 斯坦纳树)

    题目链接 f[i][s]表示以i为根节点,当前关键点的连通状态为s(每个点是否已与i连通)时的最优解.i是枚举得到的根节点,有了根节点就容易DP了. 那么i为根节点时,其状态s的更新为 \(f[i][ ...

  4. BZOJ 2595 [Wc2008]游览计划 ——斯坦纳树

    [题目分析] 斯坦纳树=子集DP+SPFA? 用来学习斯坦纳树的模板. 大概就是用二进制来表示树包含的点,然后用跟几点表示树的形态. 更新分为两种,一种是合并两个子集,一种是换根,换根用SPFA迭代即 ...

  5. 【BZOJ 2595】2595: [Wc2008]游览计划 (状压DP+spfa,斯坦纳树?)

    2595: [Wc2008]游览计划 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1572  Solved: 7 ...

  6. 【BZOJ】2595: [Wc2008]游览计划

    题意 \(n * m\)的网格,如果\(a_{i, j} = 0\)则表示景点,否则表示这里的需要的志愿者人数.求一种安排志愿者的方案使得所有景点连通且志愿者最少. 分析 本题可以插头dp,然而有一个 ...

  7. 【LG4294】[WC2008]游览计划

    [LG4294][WC2008]游览计划 题面 洛谷 bzoj 题解 斯坦纳树板子题. 斯坦纳树的总结先留个坑. 代码 #include <iostream> #include <c ...

  8. BZOJ_2595_[Wc2008]游览计划_斯坦纳树

    BZOJ_2595_[Wc2008]游览计划_斯坦纳树 题意: 分析: 斯坦纳树裸题,有几个需要注意的地方 给出矩阵,不用自己建图,但枚举子集转移时会算两遍,需要减去当前点的权值 方案记录比较麻烦,两 ...

  9. [WC2008]游览计划 解题报告

    [WC2008]游览计划 斯坦纳树板子题,其实就是状压dp 令\(dp_{i,s}\)表示任意点\(i\)联通关键点集合\(s\)的最小代价 然后有转移 \[ dp_{i,S}=\min_{T\in ...

随机推荐

  1. [数据结构]C语言二叉树的实现

    树和图是数据结构中比较麻烦的东西,里面涉及的概念比较多,也最有用, 就比如一般树广泛应用于人工智能的博弈上,而基于图的广度优先和深度优先搜索也广泛应用于人工智能寻路上面 首先我们要把树进行分类: &g ...

  2. c#中treeview的使用方法(转 )

    本文主要介绍treeView控件中,添加,修改.删除节点的操作, 首先当窗体加载的时候,我们添加上图中所示的节点. 当点击“Delete the Selected”按钮时,被选中的节点将被删除. 当点 ...

  3. verilog抓外部低频输入信号的上升沿和下降沿

    版权申明:本文为博主窗户(Colin Cai)原创,欢迎转帖.如要转贴,必须注明原文网址 http://www.cnblogs.com/Colin-Cai/p/7220107.html 作者:窗户 Q ...

  4. jQuery模块化开发

    //定义了命名空间. var Itcast = {}; //定义第二级别的 命名空间. var Itcast.Model = {}; var Itcast.Model.UIJs = (function ...

  5. NodeJS初介

    之前很多环境搭建中都使用到了Nodejs,所以这边对Nodejs做一个简单总结. 1.什么是Nodejs Node.js是一个Javascript运行环境(runtime),发布于2009年5月,由R ...

  6. 几个关于js数组方法reduce的经典片段

    以下是个人在工作中收藏总结的一些关于javascript数组方法reduce的相关代码片段,后续遇到其他使用这个函数的场景,将会陆续添加,这里作为备忘. javascript数组那么多方法,为什么我要 ...

  7. ubuntu 安装 pythonenv

    This will get you going with the latest version of pyenv and make it easy to fork and contribute any ...

  8. win10使用u盘装回win7

    背景:一朋友要我帮忙把系统从win10装回到win7,因为做IT的嘛,想想也难不倒我,况且以前也经常重装系统,硬盘里就有win7的系统,于是很爽快的答应了.电脑拿过来一试才知道原来有这么多坑,原来的系 ...

  9. js生成word中图片处理

    首先功能是要求前台导出word,但是前后台是分离的,图片存在后台,所以就存在跨域问题. 导出文字都是没有问题的(jquery.wordexport.js),但是导出图片就存在问题了: 图片是以链接形式 ...

  10. Linux 常见目录与区别

    .   代表此层目录 ..   代表上一层目录 -   代表前一个工作目录 ~   代表『目前用户身份』所在的家目录