题意:给你一个无向连通图,每次加一条边后,问图中桥的数目。

思路:先将图进行双联通缩点,则缩点后图的边就是桥,然后dfs记录节点深度,给出(u,v)使其节点深度先降到同一等级,然后同时降等级直到汇合到同一个点为止。途中直接进行删边处理且桥的数目减少。

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
using namespace std;
#define MAXN 100005
struct E
{
int to,next;
}edge[10*MAXN],e[10*MAXN]; int tt,tot,index,cnt,n,m,k;
int h[MAXN],head[MAXN],vis[MAXN],dfn[MAXN],low[MAXN],fa[MAXN],level[MAXN],pre[MAXN],res[MAXN];
bool bridge[MAXN]; void addedge(int u,int v)
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++; edge[tot].to=u;
edge[tot].next=head[v];
head[v]=tot++;
}
void adde(int u,int v)
{
e[tt].to=v;
e[tt].next=h[u];
h[u]=tt++;
}
int find(int x)
{
if(x!=fa[x])
fa[x]=find(fa[x]);
return fa[x];
}
void tarjan(int u,int f)
{
int i,v;
vis[u]=1;
dfn[u]=low[u]=++index;
for(int i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].to;
if(vis[v]==0)
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
if(dfn[u]<low[v])//判断桥
{
cnt++;
res[cnt]=i;
}
else //合并
{
u=find(u);
v=find(v);
fa[v]=u;
}
}
else if(vis[v]==1&&v!=f)
{
low[u]=min(low[u],dfn[v]);
}
}
vis[u]=2;
}
void lca_dfs(int u,int d)
{
int i,v;
level[u]=d;
vis[u]=1;
for(int i=h[u];i!=-1;i=e[i].next)
{
v=e[i].to;
if(!vis[v])
{
pre[v]=u;
lca_dfs(v,d+1);
}
}
}
void lca(int u,int v)
{
while(level[u]>level[v])
{
if(bridge[u])
{
cnt--;
bridge[u]=0;
}
u=pre[u];
}
while(level[v]>level[u])
{
if(bridge[v])
{
cnt--;
bridge[v]=0;
}
v=pre[v];
}
while(u!=v)
{
if(bridge[u])
{
cnt--;
bridge[u]=0;
}
if(bridge[v])
{
cnt--;
bridge[v]=0;
}
u=pre[u];
v=pre[v];
}
}
void Init()
{
memset(h,-1,sizeof(h));
memset(head,-1,sizeof(head));
memset(dfn,0,sizeof(dfn));
memset(vis,0,sizeof(vis));
memset(bridge,false,sizeof(bridge));
memset(level,0,sizeof(level));
tot=tt=index=cnt=0;
for(int i=1;i<=n;i++)
{
fa[i]=i;
}
}
int main()
{
freopen("in.txt","r",stdin);
int t=1;
while(scanf("%d%d",&n,&m)!=EOF,(n||m))
{
Init();
for(int i=0;i<m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
addedge(u,v);
}
for(int i=1;i<=n;i++)
if(!vis[i])
tarjan(i,-1);
int a,b;
for(int u=1;u<=n;u++) //缩点后再构图
{
for(int j=head[u];j!=-1;j=edge[j].next)
{
int v=edge[j].to;
a=find(u);
b=find(v);
if(a!=b)
{
adde(a,b);
}
}
}
memset(vis,0,sizeof(vis));
lca_dfs(fa[1],1);
for(int i=1;i<=cnt;i++)
{
bridge[find(edge[res[i]].to)]=1;
}
printf("Case %d:\n",t++);
scanf("%d",&k);
while(k--)
{
int i,j;
scanf("%d%d",&i,&j);
int x=find(i),y=find(j);
if(x!=y)
{
lca(x,y);
}
printf("%d\n",cnt);
}
printf("\n");
}
return 0;
}

poj 3694双联通缩点+LCA的更多相关文章

  1. hdu 2460 poj 3694 (双联通+LCA)

    在给出的两个点上加一条边,求剩下桥的数量,,不会LCA在线,就用了最普通的,先Tarjan双联通缩点,然后将缩完的图建成一棵树,树的所有边就是桥了,如果在任意两点间加一条边的话,那么从两点到最近公共祖 ...

  2. Poj 3694 Network (连通图缩点+LCA+并查集)

    题目链接: Poj 3694 Network 题目描述: 给出一个无向连通图,加入一系列边指定的后,问还剩下多少个桥? 解题思路: 先求出图的双连通分支,然后缩点重新建图,加入一个指定的边后,求出这条 ...

  3. 边的双联通+缩点+LCA(HDU3686)

    Traffic Real Time Query System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  4. hdu 4612 双联通缩点+树形dp

    #pragma comment(linker,"/STACK:102400000,102400000")//总是爆栈加上这个就么么哒了 #include<stdio.h> ...

  5. HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)

    Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...

  6. POJ 3694——Network——————【连通图,LCA求桥】

    Network Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  7. Codeforces 1000 组合数可行线段倒dp 边双联通缩点求树直径

    A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) using namespace std ...

  8. 图论-桥/割点/双连通分量/缩点/LCA

    基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个 ...

  9. POJ3694 Network(边双连通分量+缩点+LCA)

    题目大概是给一张图,动态加边动态求割边数. 本想着求出边双连通分量后缩点,然后构成的树用树链剖分+线段树去维护路径上的边数和..好像好难写.. 看了别人的解法,这题有更简单的算法: 在任意两点添边,那 ...

随机推荐

  1. 41. leetcode 53. Maximum Subarray

    53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...

  2. hdu 6045 Is Derek lying?(思维推导)

    Problem Description Derek and Alfia are good friends.Derek is Chinese,and Alfia is Austrian.This sum ...

  3. C++ STL 栈和队列详解

    一.解释: 1.栈 栈是一种特殊的线性表.其特殊性在于限定插入和删除数据元素的操作只能在线性表的一端进行.如下所示: 结论:后进先出(Last In First Out),简称为LIFO线性表. 举个 ...

  4. 【python密码学编程】7.暴力破解凯撒加密法

    # _*_ coding:utf-8 _*_ #Caeser Ciper import pyperclip messgae = 'GUVF VF ZL FRPERG ZRFFTNR.' nums = ...

  5. Loadrunner 网页诊断图

    Loadrunner 11汉化后版本不包括网页诊断图,所以要想使用网页诊断图,不要汉化.12.50版本汉化后不受影响. 场景执行完,进行analysis时,才能打开网页诊断图. 网页诊断图中组件下载时 ...

  6. 前端开发之JavaScript篇

    一.JavaScript介绍  前端三剑客之JavaScript,简称js,可能是这三个里面最难的一个了.很早以前,市面上流通着三种js版本,为了统一,ECMA(欧洲计算机制造协会)定义了规范的版本, ...

  7. android 适配器 ArrayAdapter,SimpleAdapter的学习

    今天认真看了下android适配器,学习了下它的使用方法. 一,ArrayAdapter ArrayAdapter 比较简单,只可以存放一行文本信息.下面是简单的实现 private ListView ...

  8. Python集合(set)类型的操作

    python的set和其他语言类似, 是一个无序不重复元素集, 基本功能包括关系测试和消除重复元素. 集合对象还支持union(联合), intersection(交), difference(差)和 ...

  9. ORACLE索引监控的简单使用

    --ORACLE索引监控的简单使用-------------------------2013/11/20 说明:     应用程序在开发时,可能会建立众多索引,但是这些索引的使用到底怎么样,是否有些索 ...

  10. 2017年最新15个漂亮的 HTML 摄影网站模板

    摄影是一门艺术,它需要大量的耐心和努力工作来捕捉那些精彩的瞬间.如果你是一位热情的摄影师,想要建立一个网站来展示那些高质量的摄影作品,那么你找对地方了.本文包含15个最佳的摄影网站模板,你可以使用这些 ...