这两天学习无锁的并发模式,发现相比于传统的 同步加锁相比,有两点好处
1.无锁 模式 相比于 传统的 同步加锁  提高了性能

2.无锁模式 是天然的死锁免疫

下来介绍无锁的Vector--- LockFreeVector

它的结构是:

private final AtomicReferenceArray<AtomicReferenceArray<E>> buckets;

从这里我们可以看到,它的内部是采用的是 无锁的引用数组, 数组嵌套数组

相当于一个二维数组,它的大小可以动态的进行扩展,

为了更有序的读写数组,定义了一个Descriptor的静态内部类。它的作用是使用CAS操作写入新数据。

它定义了

private static final int FIRST_BUCKET_SIZE = 8;

/**
* number of buckets. 30 will allow 8*(2^30-1) elements
*/
private static final int N_BUCKET = 30;
FIRST_BUCKET_SIZE:为第一个数组的长度

N_BUCKET 整个二维数组最大可扩转至30

每次的扩展是成倍的增加,即:第一个数组长度为8,第二个为8<<1,第三个为8<<2 ......第30个为 8<<29

贡献源码:

/*
* Copyright (c) 2007 IBM Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/ package main.java.org.amino.ds.lockfree; import java.util.AbstractList;
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.atomic.AtomicReferenceArray; /**
* It is a thread safe and lock-free vector.
* This class implement algorithm from:<br>
*
* Lock-free Dynamically Resizable Arrays <br>
*
* Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup<br>
* Texas A&M University College Station, TX 77843-3112<br>
* {dechev, peter.pirkelbauer}@tamu.edu, bs@cs.tamu.edu
*
*
* @author Zhi Gan
*
* @param <E> type of element in the vector
*
*/
public class LockFreeVector<E> extends AbstractList<E> {
private static final boolean debug = false;
/**
* Size of the first bucket. sizeof(bucket[i+1])=2*sizeof(bucket[i])
*/
private static final int FIRST_BUCKET_SIZE = 8; /**
* number of buckets. 30 will allow 8*(2^30-1) elements
*/
private static final int N_BUCKET = 30; /**
* We will have at most N_BUCKET number of buckets. And we have
* sizeof(buckets.get(i))=FIRST_BUCKET_SIZE**(i+1)
*/
private final AtomicReferenceArray<AtomicReferenceArray<E>> buckets; /**
* @author ganzhi
*
* @param <E>
*/
static class WriteDescriptor<E> {
public E oldV;
public E newV;
public AtomicReferenceArray<E> addr;
public int addr_ind; /**
* Creating a new descriptor.
*
* @param addr Operation address
* @param addr_ind Index of address
* @param oldV old operand
* @param newV new operand
*/
public WriteDescriptor(AtomicReferenceArray<E> addr, int addr_ind,
E oldV, E newV) {
this.addr = addr;
this.addr_ind = addr_ind;
this.oldV = oldV;
this.newV = newV;
} /**
* set newV.
*/
public void doIt() {
addr.compareAndSet(addr_ind, oldV, newV);
}
} /**
* @author ganzhi
*
* @param <E>
*/
static class Descriptor<E> {
public int size;
volatile WriteDescriptor<E> writeop; /**
* Create a new descriptor.
*
* @param size Size of the vector
* @param writeop Executor write operation
*/
public Descriptor(int size, WriteDescriptor<E> writeop) {
this.size = size;
this.writeop = writeop;
} /**
*
*/
public void completeWrite() {
WriteDescriptor<E> tmpOp = writeop;
if (tmpOp != null) {
tmpOp.doIt();
writeop = null; // this is safe since all write to writeop use
// null as r_value.
}
}
} private AtomicReference<Descriptor<E>> descriptor;
private static final int zeroNumFirst = Integer
.numberOfLeadingZeros(FIRST_BUCKET_SIZE);; /**
* Constructor.
*/
public LockFreeVector() {
buckets = new AtomicReferenceArray<AtomicReferenceArray<E>>(N_BUCKET);
buckets.set(0, new AtomicReferenceArray<E>(FIRST_BUCKET_SIZE));
descriptor = new AtomicReference<Descriptor<E>>(new Descriptor<E>(0,
null));
} /**
* add e at the end of vector.
*
* @param e
* element added
*/
public void push_back(E e) {
Descriptor<E> desc;
Descriptor<E> newd;
do {
desc = descriptor.get();
desc.completeWrite();
//desc.size Vector 本身的大小
//FIRST_BUCKET_SIZE 第一个一位数组的大小
int pos = desc.size + FIRST_BUCKET_SIZE;
int zeroNumPos = Integer.numberOfLeadingZeros(pos); // 取出pos 的前导领
//zeroNumFirst 为FIRST_BUCKET_SIZE 的前导领
int bucketInd = zeroNumFirst - zeroNumPos; //哪个一位数组
//判断这个一维数组是否已经启用
if (buckets.get(bucketInd) == null) {
//newLen 一维数组的长度
int newLen = 2 * buckets.get(bucketInd - 1).length();
if (debug)
System.out.println("New Length is:" + newLen);
buckets.compareAndSet(bucketInd, null,
new AtomicReferenceArray<E>(newLen));
} int idx = (0x80000000>>>zeroNumPos) ^ pos; //在这个一位数组中,我在哪个位置
newd = new Descriptor<E>(desc.size + 1, new WriteDescriptor<E>(
buckets.get(bucketInd), idx, null, e));
} while (!descriptor.compareAndSet(desc, newd));
descriptor.get().completeWrite();
} /**
* Remove the last element in the vector.
*
* @return element removed
*/
public E pop_back() {
Descriptor<E> desc;
Descriptor<E> newd;
E elem;
do {
desc = descriptor.get();
desc.completeWrite(); int pos = desc.size + FIRST_BUCKET_SIZE - 1;
int bucketInd = Integer.numberOfLeadingZeros(FIRST_BUCKET_SIZE)
- Integer.numberOfLeadingZeros(pos);
int idx = Integer.highestOneBit(pos) ^ pos;
elem = buckets.get(bucketInd).get(idx);
newd = new Descriptor<E>(desc.size - 1, null);
} while (!descriptor.compareAndSet(desc, newd)); return elem;
} /**
* Get element with the index.
*
* @param index
* index
* @return element with the index
*/
@Override
public E get(int index) {
int pos = index + FIRST_BUCKET_SIZE;
int zeroNumPos = Integer.numberOfLeadingZeros(pos);
int bucketInd = zeroNumFirst - zeroNumPos;
int idx = (0x80000000>>>zeroNumPos) ^ pos;
return buckets.get(bucketInd).get(idx);
} /**
* Set the element with index to e.
*
* @param index
* index of element to be reset
* @param e
* element to set
*/
/**
* {@inheritDoc}
*/
public E set(int index, E e) {
int pos = index + FIRST_BUCKET_SIZE;
int bucketInd = Integer.numberOfLeadingZeros(FIRST_BUCKET_SIZE)
- Integer.numberOfLeadingZeros(pos);
int idx = Integer.highestOneBit(pos) ^ pos;
AtomicReferenceArray<E> bucket = buckets.get(bucketInd);
while (true) {
E oldV = bucket.get(idx);
if (bucket.compareAndSet(idx, oldV, e))
return oldV;
}
} /**
* reserve more space.
*
* @param newSize
* new size be reserved
*/
public void reserve(int newSize) {
int size = descriptor.get().size;
int pos = size + FIRST_BUCKET_SIZE - 1;
int i = Integer.numberOfLeadingZeros(FIRST_BUCKET_SIZE)
- Integer.numberOfLeadingZeros(pos);
if (i < 1)
i = 1; int initialSize = buckets.get(i - 1).length();
while (i < Integer.numberOfLeadingZeros(FIRST_BUCKET_SIZE)
- Integer.numberOfLeadingZeros(newSize + FIRST_BUCKET_SIZE - 1)) {
i++;
initialSize *= FIRST_BUCKET_SIZE;
buckets.compareAndSet(i, null, new AtomicReferenceArray<E>(
initialSize));
}
} /**
* size of vector.
*
* @return size of vector
*/
public int size() {
return descriptor.get().size;
} /**
* {@inheritDoc}
*/
@Override
public boolean add(E object) {
push_back(object);
return true;
}
}

参考:http://www.shaoqun.com/a/197387.aspx

源码部分,我只着重写了push_back这个方法的注释。

无锁模式的Vector的更多相关文章

  1. CAS实现无锁模式

    用多线程实现一个数字的自增长到1000000,分别用无锁模式和锁模式来实现代码. 1.使用ReentrantLock. package test; import java.util.concurren ...

  2. CAS无锁模式

    一.java内存模型:JMM 在内存模型当中定义一个主内存,所有声明的实例变量都存在于主内存当中,主内存的数据会共享给所有线程,每一个线程有一个块工作内存,工作内存当中主内存数据的副本当更新数据时,会 ...

  3. CAS无锁机制原理

    原子类 java.util.concurrent.atomic包:原子类的小工具包,支持在单个变量上解除锁的线程安全编程 原子变量类相当于一种泛化的 volatile 变量,能够支持原子的和有条件的读 ...

  4. 无锁版以时间为GUID的方法

    之前的博客 将时间作为GUID的方法 中,我使用了锁.我在实际的使用中,错将锁的释放放在了if语句中,这纯粹是我的失误,导致了很严重的错误.因此我在想是否有无锁的将时间作为GUID的方式,答案是使用I ...

  5. 【实战Java高并发程序设计6】挑战无锁算法:无锁的Vector实现

    [实战Java高并发程序设计 1]Java中的指针:Unsafe类 [实战Java高并发程序设计 2]无锁的对象引用:AtomicReference [实战Java高并发程序设计 3]带有时间戳的对象 ...

  6. 性能优化-使用双buffer实现无锁队列

    借助本文,实现一种在"读多写一"场景下的无锁实现方式 在我们的工作中,多线程编程是一件太稀松平常的事.在多线程环境下操作一个变量或者一块缓存,如果不对其操作加以限制,轻则变量值或者 ...

  7. [转]透过 Linux 内核看无锁编程

    非阻塞型同步 (Non-blocking Synchronization) 简介 如何正确有效的保护共享数据是编写并行程序必须面临的一个难题,通常的手段就是同步.同步可分为阻塞型同步(Blocking ...

  8. 非阻塞同步算法与CAS(Compare and Swap)无锁算法

    锁(lock)的代价 锁是用来做并发最简单的方式,当然其代价也是最高的.内核态的锁的时候需要操作系统进行一次上下文切换,加锁.释放锁会导致比较多的上下文切换和调度延时,等待锁的线程会被挂起直至锁释放. ...

  9. 无锁编程以及CAS

    无锁编程 / lock-free / 非阻塞同步 无锁编程,即不使用锁的情况下实现多线程之间的变量同步,也就是在没有线程被阻塞的情况下实现变量的同步,所以也叫非阻塞同步(Non-blocking Sy ...

随机推荐

  1. mysql视图 更新中的问题

    mysql view 类型 mysql的视图有三种类型:merge.temptable.undefined.如果没有ALGORITHM子句,默认算法是UNDEFINED(未定义的). 算法会影响MyS ...

  2. Python 多进程概述

    multiprocessing python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.Python提供了非常好用的多进程包mult ...

  3. [转载]转载一篇好文章作为Java与面向对象之随感(3)

    关于对象与引用之间的一些基本概念. 初学Java时,在很长一段时间里,总觉得基本概念很模糊.后来才知道,在许多Java书中,把对象和对象的引用混为一谈.可是,如果我分不清对象与对象引用, 那实在没法很 ...

  4. linux入门之用户管理

    用户管理 添加用户 以root用户执行 adduser  或 useradd [new_account] -u  UID   -d 指定家目录 -g GID 指定一个基本组ID   -G指定一个附加组 ...

  5. transform-origin 的定位

    transform-origin接受两个参数,它们可以是百分比,em,px等具体的值,也可以是left,center,right,或者 top,center,bottom等描述性参数,第一个参数表示X ...

  6. java多线程基本概述(二十)——中断

    线程中断我们已经直到可以使用 interrupt() 方法,但是你必须要持有 Thread 对象,但是新的并发库中似乎在避免直接对 Thread 对象的直接操作,尽量使用 Executor 来执行所有 ...

  7. 本学期微分方程数值解课程总结(matlab代码)

    最简单求解一个微分方程数值解得方法:Euler法 function [x,y]=Euler_method(dufun,span,h,x0,y0) %EuLer格式, %求解方程y'=dufun(x,y ...

  8. TC SRM683 Div1 250

    大意是有一排石子,每一堆有a[i]个,目标状态每一堆有b[i]个,每一步可以从一堆中取出一个石子转移到相邻的一个,其中1和n也算相邻也即环形.问最少步数. 比赛的时候写了个按照步数贪心的做法,FST了 ...

  9. 个人VIM配置实例

    用户 vimrc 文件: "$HOME/.vimrc" " vimrc by lewiyon@hotmail.com " last update 2013-10 ...

  10. 手把手教你学SVN

    注意 转载须保留原文链接(http://www.cnblogs.com/wzhiq896/p/6822713.html  ) 作者:wangwen896 整理 对于很多新手来说,SVN 代码托管一无所 ...