这两天学习无锁的并发模式,发现相比于传统的 同步加锁相比,有两点好处
1.无锁 模式 相比于 传统的 同步加锁  提高了性能

2.无锁模式 是天然的死锁免疫

下来介绍无锁的Vector--- LockFreeVector

它的结构是:

private final AtomicReferenceArray<AtomicReferenceArray<E>> buckets;

从这里我们可以看到,它的内部是采用的是 无锁的引用数组, 数组嵌套数组

相当于一个二维数组,它的大小可以动态的进行扩展,

为了更有序的读写数组,定义了一个Descriptor的静态内部类。它的作用是使用CAS操作写入新数据。

它定义了

private static final int FIRST_BUCKET_SIZE = 8;

/**
* number of buckets. 30 will allow 8*(2^30-1) elements
*/
private static final int N_BUCKET = 30;
FIRST_BUCKET_SIZE:为第一个数组的长度

N_BUCKET 整个二维数组最大可扩转至30

每次的扩展是成倍的增加,即:第一个数组长度为8,第二个为8<<1,第三个为8<<2 ......第30个为 8<<29

贡献源码:

/*
* Copyright (c) 2007 IBM Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/ package main.java.org.amino.ds.lockfree; import java.util.AbstractList;
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.atomic.AtomicReferenceArray; /**
* It is a thread safe and lock-free vector.
* This class implement algorithm from:<br>
*
* Lock-free Dynamically Resizable Arrays <br>
*
* Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup<br>
* Texas A&M University College Station, TX 77843-3112<br>
* {dechev, peter.pirkelbauer}@tamu.edu, bs@cs.tamu.edu
*
*
* @author Zhi Gan
*
* @param <E> type of element in the vector
*
*/
public class LockFreeVector<E> extends AbstractList<E> {
private static final boolean debug = false;
/**
* Size of the first bucket. sizeof(bucket[i+1])=2*sizeof(bucket[i])
*/
private static final int FIRST_BUCKET_SIZE = 8; /**
* number of buckets. 30 will allow 8*(2^30-1) elements
*/
private static final int N_BUCKET = 30; /**
* We will have at most N_BUCKET number of buckets. And we have
* sizeof(buckets.get(i))=FIRST_BUCKET_SIZE**(i+1)
*/
private final AtomicReferenceArray<AtomicReferenceArray<E>> buckets; /**
* @author ganzhi
*
* @param <E>
*/
static class WriteDescriptor<E> {
public E oldV;
public E newV;
public AtomicReferenceArray<E> addr;
public int addr_ind; /**
* Creating a new descriptor.
*
* @param addr Operation address
* @param addr_ind Index of address
* @param oldV old operand
* @param newV new operand
*/
public WriteDescriptor(AtomicReferenceArray<E> addr, int addr_ind,
E oldV, E newV) {
this.addr = addr;
this.addr_ind = addr_ind;
this.oldV = oldV;
this.newV = newV;
} /**
* set newV.
*/
public void doIt() {
addr.compareAndSet(addr_ind, oldV, newV);
}
} /**
* @author ganzhi
*
* @param <E>
*/
static class Descriptor<E> {
public int size;
volatile WriteDescriptor<E> writeop; /**
* Create a new descriptor.
*
* @param size Size of the vector
* @param writeop Executor write operation
*/
public Descriptor(int size, WriteDescriptor<E> writeop) {
this.size = size;
this.writeop = writeop;
} /**
*
*/
public void completeWrite() {
WriteDescriptor<E> tmpOp = writeop;
if (tmpOp != null) {
tmpOp.doIt();
writeop = null; // this is safe since all write to writeop use
// null as r_value.
}
}
} private AtomicReference<Descriptor<E>> descriptor;
private static final int zeroNumFirst = Integer
.numberOfLeadingZeros(FIRST_BUCKET_SIZE);; /**
* Constructor.
*/
public LockFreeVector() {
buckets = new AtomicReferenceArray<AtomicReferenceArray<E>>(N_BUCKET);
buckets.set(0, new AtomicReferenceArray<E>(FIRST_BUCKET_SIZE));
descriptor = new AtomicReference<Descriptor<E>>(new Descriptor<E>(0,
null));
} /**
* add e at the end of vector.
*
* @param e
* element added
*/
public void push_back(E e) {
Descriptor<E> desc;
Descriptor<E> newd;
do {
desc = descriptor.get();
desc.completeWrite();
//desc.size Vector 本身的大小
//FIRST_BUCKET_SIZE 第一个一位数组的大小
int pos = desc.size + FIRST_BUCKET_SIZE;
int zeroNumPos = Integer.numberOfLeadingZeros(pos); // 取出pos 的前导领
//zeroNumFirst 为FIRST_BUCKET_SIZE 的前导领
int bucketInd = zeroNumFirst - zeroNumPos; //哪个一位数组
//判断这个一维数组是否已经启用
if (buckets.get(bucketInd) == null) {
//newLen 一维数组的长度
int newLen = 2 * buckets.get(bucketInd - 1).length();
if (debug)
System.out.println("New Length is:" + newLen);
buckets.compareAndSet(bucketInd, null,
new AtomicReferenceArray<E>(newLen));
} int idx = (0x80000000>>>zeroNumPos) ^ pos; //在这个一位数组中,我在哪个位置
newd = new Descriptor<E>(desc.size + 1, new WriteDescriptor<E>(
buckets.get(bucketInd), idx, null, e));
} while (!descriptor.compareAndSet(desc, newd));
descriptor.get().completeWrite();
} /**
* Remove the last element in the vector.
*
* @return element removed
*/
public E pop_back() {
Descriptor<E> desc;
Descriptor<E> newd;
E elem;
do {
desc = descriptor.get();
desc.completeWrite(); int pos = desc.size + FIRST_BUCKET_SIZE - 1;
int bucketInd = Integer.numberOfLeadingZeros(FIRST_BUCKET_SIZE)
- Integer.numberOfLeadingZeros(pos);
int idx = Integer.highestOneBit(pos) ^ pos;
elem = buckets.get(bucketInd).get(idx);
newd = new Descriptor<E>(desc.size - 1, null);
} while (!descriptor.compareAndSet(desc, newd)); return elem;
} /**
* Get element with the index.
*
* @param index
* index
* @return element with the index
*/
@Override
public E get(int index) {
int pos = index + FIRST_BUCKET_SIZE;
int zeroNumPos = Integer.numberOfLeadingZeros(pos);
int bucketInd = zeroNumFirst - zeroNumPos;
int idx = (0x80000000>>>zeroNumPos) ^ pos;
return buckets.get(bucketInd).get(idx);
} /**
* Set the element with index to e.
*
* @param index
* index of element to be reset
* @param e
* element to set
*/
/**
* {@inheritDoc}
*/
public E set(int index, E e) {
int pos = index + FIRST_BUCKET_SIZE;
int bucketInd = Integer.numberOfLeadingZeros(FIRST_BUCKET_SIZE)
- Integer.numberOfLeadingZeros(pos);
int idx = Integer.highestOneBit(pos) ^ pos;
AtomicReferenceArray<E> bucket = buckets.get(bucketInd);
while (true) {
E oldV = bucket.get(idx);
if (bucket.compareAndSet(idx, oldV, e))
return oldV;
}
} /**
* reserve more space.
*
* @param newSize
* new size be reserved
*/
public void reserve(int newSize) {
int size = descriptor.get().size;
int pos = size + FIRST_BUCKET_SIZE - 1;
int i = Integer.numberOfLeadingZeros(FIRST_BUCKET_SIZE)
- Integer.numberOfLeadingZeros(pos);
if (i < 1)
i = 1; int initialSize = buckets.get(i - 1).length();
while (i < Integer.numberOfLeadingZeros(FIRST_BUCKET_SIZE)
- Integer.numberOfLeadingZeros(newSize + FIRST_BUCKET_SIZE - 1)) {
i++;
initialSize *= FIRST_BUCKET_SIZE;
buckets.compareAndSet(i, null, new AtomicReferenceArray<E>(
initialSize));
}
} /**
* size of vector.
*
* @return size of vector
*/
public int size() {
return descriptor.get().size;
} /**
* {@inheritDoc}
*/
@Override
public boolean add(E object) {
push_back(object);
return true;
}
}

参考:http://www.shaoqun.com/a/197387.aspx

源码部分,我只着重写了push_back这个方法的注释。

无锁模式的Vector的更多相关文章

  1. CAS实现无锁模式

    用多线程实现一个数字的自增长到1000000,分别用无锁模式和锁模式来实现代码. 1.使用ReentrantLock. package test; import java.util.concurren ...

  2. CAS无锁模式

    一.java内存模型:JMM 在内存模型当中定义一个主内存,所有声明的实例变量都存在于主内存当中,主内存的数据会共享给所有线程,每一个线程有一个块工作内存,工作内存当中主内存数据的副本当更新数据时,会 ...

  3. CAS无锁机制原理

    原子类 java.util.concurrent.atomic包:原子类的小工具包,支持在单个变量上解除锁的线程安全编程 原子变量类相当于一种泛化的 volatile 变量,能够支持原子的和有条件的读 ...

  4. 无锁版以时间为GUID的方法

    之前的博客 将时间作为GUID的方法 中,我使用了锁.我在实际的使用中,错将锁的释放放在了if语句中,这纯粹是我的失误,导致了很严重的错误.因此我在想是否有无锁的将时间作为GUID的方式,答案是使用I ...

  5. 【实战Java高并发程序设计6】挑战无锁算法:无锁的Vector实现

    [实战Java高并发程序设计 1]Java中的指针:Unsafe类 [实战Java高并发程序设计 2]无锁的对象引用:AtomicReference [实战Java高并发程序设计 3]带有时间戳的对象 ...

  6. 性能优化-使用双buffer实现无锁队列

    借助本文,实现一种在"读多写一"场景下的无锁实现方式 在我们的工作中,多线程编程是一件太稀松平常的事.在多线程环境下操作一个变量或者一块缓存,如果不对其操作加以限制,轻则变量值或者 ...

  7. [转]透过 Linux 内核看无锁编程

    非阻塞型同步 (Non-blocking Synchronization) 简介 如何正确有效的保护共享数据是编写并行程序必须面临的一个难题,通常的手段就是同步.同步可分为阻塞型同步(Blocking ...

  8. 非阻塞同步算法与CAS(Compare and Swap)无锁算法

    锁(lock)的代价 锁是用来做并发最简单的方式,当然其代价也是最高的.内核态的锁的时候需要操作系统进行一次上下文切换,加锁.释放锁会导致比较多的上下文切换和调度延时,等待锁的线程会被挂起直至锁释放. ...

  9. 无锁编程以及CAS

    无锁编程 / lock-free / 非阻塞同步 无锁编程,即不使用锁的情况下实现多线程之间的变量同步,也就是在没有线程被阻塞的情况下实现变量的同步,所以也叫非阻塞同步(Non-blocking Sy ...

随机推荐

  1. salesforce 零基础学习(六十八)http callout test class写法

    此篇可以参考: https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_classes_restfu ...

  2. JAVA加密算法系列-AES

    package ***; import java.io.UnsupportedEncodingException; import java.security.InvalidKeyException; ...

  3. 关于C++ 循环

    有的时分,可能需求屡次履行同一块代码.通常情况下,句子是顺序履行的:函数中的第一个句子先履行,接着是第二个句子,依此类推. 编程言语供给了答应更为杂乱的履行途径的多种操控结构. 循环句子答应咱们屡次履 ...

  4. jquery判断邮箱对错

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. ios GCD简单介绍 后台运行~

    本从实践出发简单说明: 首先,gcd是Grand Central Dispatch的缩写,意为多线程优化技术,是苹果为多核处理优化的技术.使用简单.清晰. 多线程就分同步.异步方法如下: //异步线程 ...

  6. 【TED】如何掌握你的自由时间

    [TED]如何掌握你的自由时间 生活 某天翻阅自己原来记录的有道云笔记,发现自己在学校的时候,要求自己每周看三个TED视频,并写一些看后的总结,随意翻阅了下,就发现当时做的好的一些笔记,现在一看就能想 ...

  7. C 语言实现字符串替换

    void replaceFirst(char *str1,char *str2,char *str3) { ]; char *p; strcpy(str4,str1); if((p=strstr(st ...

  8. const常量类型

    1.定义:const常量类型表示一个”常值变量“,其值是不能被修改的变量.即一旦变量被声明为const类型,编译器将禁止任何试图修改该变量的操作. 2.声明:const <声明数据类型> ...

  9. Executor框架学习笔记

    Java中的线程即是工作单元也是执行机制,从JDK 5后,工作单元与执行机制被分离.工作单元包括Runnable和Callable,执行机制由JDK 5中增加的java.util.concurrent ...

  10. css过渡模块和2d转换模块

    今天,我们一起来研究一下css3中的过渡模块.2d转换模块和3d转换模块 一.过渡模块transition (一)过度模块的三要素: 1.必须要有属性发生变化 2.必须告诉系统哪个属性需要执行过渡效果 ...