1. 导入各种包

from mxnet import gluon
import mxnet as mx
from mxnet.gluon import nn
from mxnet import ndarray as nd
import matplotlib.pyplot as plt
import cv2
from mxnet import image
from mxnet import autograd

2. 导入数据

我使用cifar10这个数据集,使用gluon自带的模块下载到本地并且为了配合后面的网络,我将大小调整到224*224

def transform(data, label):
data = image.imresize(data, 224, 224)
return data.astype('float32'), label.astype('float32')
cifar10_train = gluon.data.vision.CIFAR10(root='./',train=True, transform=transform)
cifar10_test = gluon.data.vision.CIFAR10(root='./',train=False, transform=transform)
batch_size = 64
train_data = gluon.data.DataLoader(cifar10_train, batch_size, shuffle=True)
test_data = gluon.data.DataLoader(cifar10_test, batch_size, shuffle=False)

3. 加载预训练模型

gluon提供的很多预训练模型,我选择一个简单的模型AlexNet

首先下载AlexNet模型和模型参数

使用下面的代码会获取AlexNet的模型并且加载预训练好的模型参数,但是鉴于网络的原因,我提前下好了

alexnet = mx.gluon.model_zoo.vision.alexnet(pretrained=True)#如果pretrained值为True,则会下载预训练参数,否则是空模型

获取模型并从本地加载参数

alexnet = mx.gluon.model_zoo.vision.alexnet()
alexnet.load_params('alexnet-44335d1f.params',ctx=mx.gpu())

看下AlexNet网络结构,发现分为两部分,features,classifier,而features正好是需要的

print(alexnet)
AlexNet(
(features): HybridSequential(
(0): Conv2D(64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): MaxPool2D(size=(3, 3), stride=(2, 2), padding=(0, 0), ceil_mode=False)
(2): Conv2D(192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(3): MaxPool2D(size=(3, 3), stride=(2, 2), padding=(0, 0), ceil_mode=False)
(4): Conv2D(384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): Conv2D(256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): Conv2D(256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): MaxPool2D(size=(3, 3), stride=(2, 2), padding=(0, 0), ceil_mode=False)
(8): Flatten
)
(classifier): HybridSequential(
(0): Dense(4096, Activation(relu))
(1): Dropout(p = 0.5)
(2): Dense(4096, Activation(relu))
(3): Dropout(p = 0.5)
(4): Dense(1000, linear)
)
)

4. 组合新的网络

截取想要的features,并且固定参数。这样防止训练的时候把预训练好的参数给搞坏了

featuresnet = alexnet.features
for _, w in featuresnet.collect_params().items():
w.grad_req = 'null'

自己定义后面的网络,因为数据集是10类,就把最后的输出从1000改成了10。

def Classifier():
net = nn.HybridSequential()
net.add(nn.Dense(4096, activation="relu"))
net.add(nn.Dropout(.5))
net.add(nn.Dense(4096, activation="relu"))
net.add(nn.Dropout(.5))
net.add(nn.Dense(10))
return net

接着需要把两部分组合起来,并且对第二部分机进行初始化

net = nn.HybridSequential()
with net.name_scope():
net.add(featuresnet)
net.add(Classifier())
net[1].collect_params().initialize(init=mx.init.Xavier(),ctx=mx.gpu())
net.hybridize()

5. 训练

最后就是训练了,看看效果如何

#定义准确率函数
def accuracy(output, label):
return nd.mean(output.argmax(axis=1)==label).asscalar()
def evaluate_accuracy(data_iterator, net, ctx=mx.gpu()):
acc = 0.
for data, label in data_iterator:
data = data.transpose([0,3,1,2])
data = data/255
output = net(data.as_in_context(ctx))
acc += accuracy(output, label.as_in_context(ctx))
return acc / len(data_iterator)
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(
net.collect_params(), 'sgd', {'learning_rate': 0.01})
for epoch in range(1):
train_loss = 0.
train_acc = 0.
test_acc = 0.
for data, label in train_data:
label = label.as_in_context(mx.gpu())
data = data.transpose([0,3,1,2])
data = data/255
with autograd.record():
output = net(data.as_in_context(mx.gpu()))
loss = softmax_cross_entropy(output, label)
loss.backward()
trainer.step(batch_size) train_loss += nd.mean(loss).asscalar()
train_acc += accuracy(output, label)
test_acc = evaluate_accuracy(test_data, net)
print("Epoch %d. Loss: %f, Train acc %f, Test acc %f" % (
epoch, train_loss/len(train_data),
train_acc/len(train_data),test_acc))
Epoch 0. Loss: 1.249197, Train acc 0.558764, Test acc 0.696756

使用MxNet新接口Gluon提供的预训练模型进行微调的更多相关文章

  1. MXNet的新接口Gluon

    为什么要开发Gluon的接口 在MXNet中我们可以通过Sybmol模块来定义神经网络,并组通过Module模块提供的一些上层API来简化整个训练过程.那MXNet为什么还要重新开发一套Python的 ...

  2. MxNet新前端Gluon模型转换到Symbol

    1. 导入各种包 from mxnet import gluon from mxnet.gluon import nn import matplotlib.pyplot as plt from mxn ...

  3. Paddle预训练模型应用工具PaddleHub

    Paddle预训练模型应用工具PaddleHub 本文主要介绍如何使用飞桨预训练模型管理工具PaddleHub,快速体验模型以及实现迁移学习.建议使用GPU环境运行相关程序,可以在启动环境时,如下图所 ...

  4. 预训练模型时代:告别finetune, 拥抱adapter

    NLP论文解读 原创•作者 |FLIPPED 研究背景 随着计算算力的不断增加,以transformer为主要架构的预训练模型进入了百花齐放的时代.BERT.RoBERTa等模型的提出为NLP相关问题 ...

  5. 【转载】最强NLP预训练模型!谷歌BERT横扫11项NLP任务记录

    本文介绍了一种新的语言表征模型 BERT--来自 Transformer 的双向编码器表征.与最近的语言表征模型不同,BERT 旨在基于所有层的左.右语境来预训练深度双向表征.BERT 是首个在大批句 ...

  6. PyTorch-网络的创建,预训练模型的加载

    本文是PyTorch使用过程中的的一些总结,有以下内容: 构建网络模型的方法 网络层的遍历 各层参数的遍历 模型的保存与加载 从预训练模型为网络参数赋值 主要涉及到以下函数的使用 add_module ...

  7. 【翻译】OpenVINO Pre-Trained 预训练模型介绍

    OpenVINO 系列软件包预训练模型介绍 本文翻译自 Intel OpenVINO 的  "Overview of OpenVINO Toolkit Pre-Trained Models& ...

  8. dropzonejs中文翻译手册 DropzoneJS是一个提供文件拖拽上传并且提供图片预览的开源类库.

    http://wxb.github.io/dropzonejs.com.zh-CN/dropzonezh-CN/ 由于项目需要,完成一个web的图片拖拽上传,也就顺便学习和了解了一下前端的比较新的技术 ...

  9. 微信小程序语音识别服务搭建全过程解析(https api开放,支持新接口mp3录音、老接口silk录音)

    silk v3(或新录音接口mp3)录音转olami语音识别和语义处理的api服务(ubuntu16.04服务器上实现) 重要的写在前面 重要事项一: 所有相关更新,我优先更新到我个人博客中,其它地方 ...

随机推荐

  1. 即时作图新工具—ProcessOn【推荐】

    www.processon.com 推荐这个在线作图网站:免费登录,云端存储,面向对象,最重要的是提供了丰富模板! 在线软件的人气会越来越高,这是趋势啊~

  2. 软工+C(2017第3期) 超链接

    // 上一篇:分数和checklist // 下一篇:Alpha/Beta换人 注:平常看文章,总有能和构建之法,软件工程相关的链接,增量记录,也可以通过在其他人博客的交流中使用相关的超链接,在使用中 ...

  3. HTML canvas绘制椭圆

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. 【集美大学1411_助教博客】个人作业2——英语学习APP案例分析 成绩

    个人作业2--英语学习APP案例分析,截止发稿时间全班31人,提交31,未提交0人.有一名同学已经写了作业但忘记提交了,这次给分了,但下不为例.由于助教这周有点忙,所以点评得非常不及时,请同学们见谅. ...

  5. [转载] java中静态代码块的用法 static用法详解

    一.java 静态代码块 静态方法区别 一般情况下,如果有些代码必须在项目启动的时候就执行的时候,需要使用静态代码块,这种代码是主动执行的;需要在项目启动的时候就初始化,在不创建对象的情况下,其他程序 ...

  6. 201521123057 《Java程序设计》 第7周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 2. 书面作业 1.ArrayList代码分析 1.1 解释ArrayList的contains源代码 答:源代码: pub ...

  7. 201521123115《Java程序设计》第6周学习总结

    1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图,对面向对象思想进行一个总结. 注1:关键词与内容不求多,但概念之间的联系要清晰,内容覆盖 ...

  8. 201521123099 《Java程序设计》第4周学习总结

    1. 本周学习总结 2. 书面作业 注释的应用 使用类的注释与方法的注释为前面编写的类与方法进行注释,并在Eclipse中查看.(截图) 面向对象设计(大作业1,非常重要) 2.1 将在网上商城购物或 ...

  9. php中获取当前系统时间、时间戳

    今天写下otime($time, $now)为将时间格式转为时间戳,$time为必填.清楚了这个,想了解更多,请继续往下看. 3. date($format)用法比如:echo date(‘Y-m-d ...

  10. [01] Java语言的基本认识

    0.写在前面的话 我们都知道在计算机的底层,它是识别二进制的,也就是说,计算机只能认识0和1.这主要是因为电路的逻辑只有两种状态,所以只需要0和1两个数字就可以表示低电平和高电平.而计算机是由数不清的 ...