二分图最小路径覆盖--poj2060 Taxi Cab Scheme
Taxi Cab Scheme
时间限制: 1 Sec 内存限制: 64 MB
题目描述
Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coordination of the cabs in order to pick up the customers calling to get a cab as soon as possible,there is also a need to schedule all the taxi rides which have been booked in advance.Given a list of all booked taxi rides for the next day, you want to minimise the number of cabs needed to carry out all of the rides. For the sake of simplicity, we model a city as a rectangular grid. An address in the city is denoted by two integers: the street and avenue number. The time needed to get from the address a, b to c, d by taxi is |a - c| + |b - d| minutes. A cab may carry out a booked ride if it is its first ride of the day, or if it can get to the source address of the new ride from its latest,at least one minute before the new ride's scheduled departure. Note that some rides may end after midnight.
给你N个出租车的预定单表,有初始时间,起点和终点。问最少用多少辆出租车可以满足这N个预订单。
输入
On the first line of the input is a single positive integer N, telling the number of test scenarios to follow. Each scenario begins with a line containing an integer M, 0 < M < 500, being the number of booked taxi rides. The following M lines contain the rides. Each ride is described by a departure time on the format hh:mm (ranging from 00:00 to 23:59), two integers a b that are the coordinates of the source address and two integers c d that are the coordinates of the destination address. All coordinates are at least 0 and strictly smaller than 200. The booked rides in each scenario are sorted in order of increasing departure time.
输出
For each scenario, output one line containing the minimum number of cabs required to carry out all the booked taxi rides.
样例输入
2
08:00 10 11 9 16
08:07 9 16 10 11
2
08:00 10 11 9 16
08:06 9 16 10 11
样例输出
2
提示
同样的转化为图G=(V,E),则问题转化为:
在图G中选取尽可能少的点,使得图中每一条边至少有一个端点被选中。
这个问题在二分图问题中被称为最小点覆盖问题。即用最少的点去覆盖所有的边。
结论:由König定理可知最小点覆盖的点数 = 二分图最大匹配
匈牙利算法需要我们从右边的某个没有匹配的点,走出一条使得“一条没被匹配、一条已经匹配过,再下一条又没匹配这样交替地出现”的路(交错轨,增广路)。但是,现在我们已经找到了最大匹配,已经不存在这样的路了。换句话说,我们能寻找到很多可能的增广路,但最后都以找不到“终点是还没有匹配过的点”而失败。我们给所有这样的点打上记号:从右边的所有没有匹配过的点出发,按照增广路的“交替出现”的要求可以走到的所有点(最后走出的路径是很多条不完整的增广路)。那么这些点组成了最小覆盖点集:右边所有没有打上记号的点,加上左边已经有记号的点。看图,右图中展示了两条这样的路径,标记了一共6个点(用 “√”表示)。那么,用红色圈起来的三个点就是我们的最小覆盖点集。
首先,为什么这样得到的点集点的个数恰好有M个呢?答案很简单,因为每个点都是某个匹配边的其中一个端点。如果右边的哪个点是没有匹配过的,那么它早就当成起点被标记了;如果左边的哪个点是没有匹配过的,那就走不到它那里去(否则就找到了一条完整的增广路)。而一个匹配边又不可能左端点是标记了的,同时右端点是没标记的(不然的话右边的点就可以经过这条边到达了)。因此,最后我们圈起来的点与匹配边一一对应。
其次,为什么这样得到的点集可以覆盖所有的边呢?答案同样简单。不可能存在某一条边,它的左端点是没有标记的,而右端点是有标记的。原因如下:如果这条边不属于我们的匹配边,那么左端点就可以通过这条边到达(从而得到标记);如果这条边属于我们的匹配边,那么右端点不可能是一条路径的起点,于是它的标记只能是从这条边的左端点过来的(想想匹配的定义),左端点就应该有标记。
最后,为什么这是最小的点覆盖集呢?这当然是最小的,不可能有比M还小的点覆盖集了,因为要覆盖这M条匹配边至少就需要M个点(再次回到匹配的定义)。
证完了。
这道题乍一看不知道怎么做,但是仔细想一想,就可以发现如果一辆车可以在另外一个乘客出发之前赶到出发点,就可以将这两个乘客之间连一条单向边,从而可以用二分图来解决。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
using namespace std;
int n,t;
struct node
{
int time,time2;
int x1,y1,x2,y2;
}a[];
int f[][],match[],vis[],dfscnt;
int suan(int x1,int y1,int x2,int y2)
{
return abs(x2-x1)+abs(y2-y1);
}
bool dfs(int root)
{
int i;
for(i=;i<=n;i++)
{
if(f[root][i])
{
if(vis[i]!=dfscnt)
{
vis[i]=dfscnt;
if(!match[i]||dfs(match[i]))
{
match[i]=root;
return ;
}
}
}
}
return ;
}
int main()
{
int i,j;
scanf("%d",&t);
while(t--)
{
memset(f,,sizeof(f));
memset(match,,sizeof(match));
memset(vis,,sizeof(vis));
dfscnt=;
scanf("%d",&n);
for(i=;i<=n;i++)
{
int hour,minute;
scanf("%d:%d",&hour,&minute);
a[i].time=hour*+minute;
scanf("%d%d%d%d",&a[i].x1,&a[i].y1,&a[i].x2,&a[i].y2);
a[i].time2=a[i].time+suan(a[i].x1,a[i].y1,a[i].x2,a[i].y2);
}
for(i=;i<=n;i++)
{
for(j=i;j<=n;j++)
{
if(a[i].time2+suan(a[i].x2,a[i].y2,a[j].x1,a[j].y1)<a[j].time)
f[i][j]=;
}
}
int ans=;
for(i=;i<=n;i++)
{
dfscnt++;
if(dfs(i))ans++;
}
printf("%d\n",n-ans);
}
}
二分图最小路径覆盖--poj2060 Taxi Cab Scheme的更多相关文章
- Taxi Cab Scheme POJ - 2060 二分图最小路径覆盖
Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coord ...
- [bzoj2150]部落战争_二分图最小路径覆盖
部落战争 bzoj-2150 题目大意:题目链接. 注释:略. 想法: 显然是最小路径覆盖,我们知道:二分图最小路径覆盖等于节点总数-最大匹配. 所以我们用匈牙利或者dinic跑出最大匹配,然后用总结 ...
- 【HDU3861 强连通分量缩点+二分图最小路径覆盖】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意:一个有向图,让你按规则划分区域,要求划分的区域数最少. 规则如下:1.有边u到v以及有 ...
- hdu 1151 Air Raid(二分图最小路径覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=1151 Air Raid Time Limit: 1000MS Memory Limit: 10000K To ...
- HDU 3861 The King’s Problem(tarjan连通图与二分图最小路径覆盖)
题意:给我们一个图,问我们最少能把这个图分成几部分,使得每部分内的任意两点都能至少保证单向连通. 思路:使用tarjan算法求强连通分量然后进行缩点,形成一个新图,易知新图中的每个点内部的内部点都能保 ...
- POJ 3020 Antenna Placement (二分图最小路径覆盖)
<题目链接> 题目大意:一个矩形中,有N个城市’*’,现在这n个城市都要覆盖无线,每放置一个基站,至多可以覆盖相邻的两个城市.问至少放置多少个基站才能使得所有的城市都覆盖无线? 解题分析: ...
- POJ3020 Antenna Placement(二分图最小路径覆盖)
The Global Aerial Research Centre has been allotted the task of building the fifth generation of mob ...
- HDU 3861 The King’s Problem(强连通+二分图最小路径覆盖)
HDU 3861 The King's Problem 题目链接 题意:给定一个有向图,求最少划分成几个部分满足以下条件 互相可达的点必须分到一个集合 一个对点(u, v)必须至少有u可达v或者v可达 ...
- POJ 3020 (二分图+最小路径覆盖)
题目链接:http://poj.org/problem?id=3020 题目大意:读入一张地图.其中地图中圈圈代表可以布置卫星的空地.*号代表要覆盖的建筑物.一个卫星的覆盖范围是其周围上下左右四个点. ...
随机推荐
- Debian 8 下安装持续集成的工具Jenkins
前情提示:Jenkins是一个开源软件项目,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能. 第一种方法: 1.1 配置java环境变量 解压java到相应目录,我一般习惯把安装的软件 ...
- 十分钟彻底理解javascript 的 this指向,不懂请砸店
函数的this指向谁,和函数在哪里被定义的,函数在哪里被执行的没有半毛钱关系,只遵守下面的规律: 在非严格模式中: 1.自执行函数里面,this永远指向window; <script> v ...
- 设置共享目录(主机win7,虚拟机Ubuntu)
1.安装增强功能包 启动虚拟机后,在 设备 -> 分配光驱 选择VBoxGuestAdditions.iso增强包镜像(在virtualbox安装目录下) 在虚拟机中挂载光驱镜像: #mkdir ...
- 《JavaScript高级程序设计》里对 call() 和 apply() 的解释 (116页)
每个函数都包含两个非继承而来的方法:apply()和call().这两个方法的用途都是在特定的作用域中调用函数,实际上等于设置函数体内this对象的值. apply(): 方法接受两个参数:一个是在其 ...
- 解决ubuntu的gedit显示中文乱码问题
http://www.cnblogs.com/zhcncn/p/4032321.html
- 1.WF 4.5在项目中直接使用的问题
最近公司需要在互联网产品后台进行精细化流程管理,开发了一个基于WF 4.5框架的流程引擎与图形化设计器,让流程真正的跑了起来. 基于Visual Studio 直接设计流程主要面临以下的问题: 1.需 ...
- /proc/kcore失效,调试其文件系统相关模块,使重新正常工作
为分析内核,在有限的机器上用虚拟机装了CentOS.6.9.i386.minimal,重新编译了3.19.8内核并克隆.当使用/proc/kcore进行内核动态映像调试时,发现与kgdb远程调试端读到 ...
- 用SIM900上传云端数据(原创KEKE)
依次发送如下几个命令到SIM900A模块: AT+CGCLASS="B" AT+CGDCONT=1,"IP","CMNET" AT+CG ...
- cmd批处理延迟代码 结束进程
choice /t 5 /d y /n >nul taskkill /im chrome.exe /f pause
- 每天一道Java题[10]
题目 阐述创建线程最常用的两种方法及其对比. 解答 方法一:继承Thread类实现 步骤: 创建Thread类的子类,如MyThread. 重写Thread类的run()方法. 实例化MyThread ...