ALDS1_7_A-RootedTree.
Description:

A graph G = (V, E) is a data structure where V is a finite set of vertices and E is a binary relation on V represented by a set of edges. Fig. 1 illustrates an example of a graph (or graphs).

A free tree is a connnected, acyclic, undirected graph. A rooted tree is a free tree in which one of the vertices is distinguished from the others. A vertex of a rooted tree is called "node."

Your task is to write a program which reports the following information for each node u of a given rooted tree T:

node ID of u

parent of u

depth of u

node type (root, internal node or leaf)

a list of chidlren of u

If the last edge on the path from the root r of a tree T to a node x is (p, x), then p is the parent of x, and x is a child of p. The root is the only node in T with no parent.

A node with no children is an external node or leaf. A nonleaf node is an internal node

The number of children of a node x in a rooted tree T is called the degree of x.

The length of the path from the root r to a node x is the depth of x in T.

Here, the given tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Fig. 2 shows an example of rooted trees where ID of each node is indicated by a number in a circle (node). The example corresponds to the first sample input.

Input:

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n lines, the information of each node u is given in the following format:

id k c1 c2 ... ck

where id is the node ID of u, k is the degree of u, c1 ... ck are node IDs of 1st, ... kth child of u. If the node does not have a child, the k is 0.

Output:

Print the information of each node in the following format ordered by IDs:

node id: parent = p , depth = d, type, [c1...ck]

p is ID of its parent. If the node does not have a parent, print -1.

d is depth of the node.

type is a type of nodes represented by a string (root, internal node or leaf). If the root can be considered as a leaf or an internal node, print root.

c1...ck is the list of children as a ordered tree.

Please follow the format presented in a sample output below.

Constraints:

≤ n ≤ 100000

SampleInput1:

13

0 3 1 4 10

1 2 2 3

2 0

3 0

4 3 5 6 7

5 0

6 0

7 2 8 9

8 0

9 0

10 2 11 12

11 0

12 0

SampleOutput1:

node 0: parent = -1, depth = 0, root, [1, 4, 10]

node 1: parent = 0, depth = 1, internal node, [2, 3]

node 2: parent = 1, depth = 2, leaf, []

node 3: parent = 1, depth = 2, leaf, []

node 4: parent = 0, depth = 1, internal node, [5, 6, 7]

node 5: parent = 4, depth = 2, leaf, []

node 6: parent = 4, depth = 2, leaf, []

node 7: parent = 4, depth = 2, internal node, [8, 9]

node 8: parent = 7, depth = 3, leaf, []

node 9: parent = 7, depth = 3, leaf, []

node 10: parent = 0, depth = 1, internal node, [11, 12]

node 11: parent = 10, depth = 2, leaf, []

node 12: parent = 10, depth = 2, leaf, []

SampleInput2:

4

1 3 3 2 0

0 0

3 0

2 0

SampleOutput2:

node 0: parent = 1, depth = 1, leaf, []

node 1: parent = -1, depth = 0, root, [3, 2, 0]

node 2: parent = 1, depth = 1, leaf, []

node 3: parent = 1, depth = 1, leaf, []

Codes:
//#define LOCAL

#include <cstdio>

#define N -1
#define M 100010
struct Node { int p, l, r; };
Node T[M]; int A[M]; void print(int a) {
int i = 0, b = T[a].l;
printf("node %d: parent = %d, depth = %d, ", a, T[a].p, A[a]);
if(T[a].p == N) printf("root, [");
else if(T[a].l == N) printf("leaf, [");
else printf("internal node, [");
for(; b!=N; ++i, b=T[b].r) {
if(i) printf(", ");
printf("%d", b);
}
printf("]\n");
} void rec(int a, int b) {
A[a] = b;
if(T[a].r != N) rec(T[a].r, b);
if(T[a].l != N) rec(T[a].l, b+1);
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int a, b, c, d, i, j, n, r;
scanf("%d", &n);
for(i=0; i<n; ++i) T[i].p = T[i].l = T[i].r = -1; for(i=0; i<n; ++i) {
scanf("%d%d", &a, &b);
for(j=0; j<b; ++j) {
scanf("%d", &c);
if(!j) T[a].l = c;
else T[d].r = c;
d = c; T[c].p = a;
}
}
for(i=0; i<n; ++i) {
if(T[i].p == N) { r = i; break; }
} rec(r, 0);
for(i=0; i<n; ++i) print(i); return 0;
}
ALDS1_7_B-BinaryTree.
Description:

A rooted binary tree is a tree with a root node in which every node has at most two children.

Your task is to write a program which reads a rooted binary tree T and prints the following information for each node u of T:

node ID of u

parent of u

sibling of u

the number of children of u

depth of u

height of u

node type (root, internal node or leaf)

If two nodes have the same parent, they are siblings. Here, if u and v have the same parent, we say u is a sibling of v (vice versa).

The height of a node in a tree is the number of edges on the longest simple downward path from the node to a leaf.

Here, the given binary tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Input:

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n lines, the information of each node is given in the following format:

id left right

id is the node ID, left is ID of the left child and right is ID of the right child. If the node does not have the left (right) child, the left(right) is indicated by -1.

Output:

Print the information of each node in the following format:

node id: parent = p , sibling = s , degree = deg, depth = dep, height = h, type

p is ID of its parent. If the node does not have a parent, print -1.

s is ID of its sibling. If the node does not have a sibling, print -1.

deg, dep and h are the number of children, depth and height of the node respectively.

type is a type of nodes represented by a string (root, internal node or leaf. If the root can be considered as a leaf or an internal node, print root.

Please follow the format presented in a sample output below.

Constraints:

1 ≤ n ≤ 25

SampleInput:

9

0 1 4

1 2 3

2 -1 -1

3 -1 -1

4 5 8

5 6 7

6 -1 -1

7 -1 -1

8 -1 -1

SampleOutput:

node 0: parent = -1, sibling = -1, degree = 2, depth = 0, height = 3, root

node 1: parent = 0, sibling = 4, degree = 2, depth = 1, height = 1, internal node

node 2: parent = 1, sibling = 3, degree = 0, depth = 2, height = 0, leaf

node 3: parent = 1, sibling = 2, degree = 0, depth = 2, height = 0, leaf

node 4: parent = 0, sibling = 1, degree = 2, depth = 1, height = 2, internal node

node 5: parent = 4, sibling = 8, degree = 2, depth = 2, height = 1, internal node

node 6: parent = 5, sibling = 7, degree = 0, depth = 3, height = 0, leaf

node 7: parent = 5, sibling = 6, degree = 0, depth = 3, height = 0, leaf

node 8: parent = 4, sibling = 5, degree = 0, depth = 2, height = 0, leaf

Codes:
//#define LOCAL

#include <cstdio>

#define MAX 10000
#define NIL -1
struct Node { int parent, left, right; };
Node T[MAX]; int n, D[MAX], H[MAX]; void setDepth(int u, int d) {
if(u == NIL) return;
D[u] = d;
setDepth(T[u].left, d+1);
setDepth(T[u].right, d+1);
} int setHeight(int u) {
int h1 = 0, h2 = 0;
if(T[u].left != NIL) h1 = setHeight(T[u].left)+1;
if(T[u].right != NIL) h2 = setHeight(T[u].right)+1;
return H[u] = h1>h2?h1:h2;
} int getSibling(int u) {
if(T[u].parent == NIL) return NIL;
if(T[T[u].parent].left!=u && T[T[u].parent].left!=NIL) return T[T[u].parent].left;
if(T[T[u].parent].right!=u && T[T[u].parent].right!=NIL) return T[T[u].parent].right;
return NIL;
} void print(int u) {
printf("node %d: parent = %d, sibling = %d, ", u, T[u].parent, getSibling(u));
int deg = 0;
if(T[u].left != NIL) ++deg;
if(T[u].right != NIL) ++deg;
printf("degree = %d, depth = %d, height = %d, ", deg, D[u], H[u]);
if(T[u].parent == NIL) printf("root\n");
else if(T[u].left==NIL && T[u].right==NIL) printf("leaf\n");
else printf("internal node\n");
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int i, v, l, r, root = 0;
scanf("%d", &n);
for(i=0; i<n; ++i) T[i].parent = NIL;
for(i=0; i<n; ++i) {
scanf("%d%d%d", &v, &l, &r);
T[v].left = l, T[v].right = r;
if(l != NIL) T[l].parent = v;
if(r != NIL) T[r].parent = v;
} for(i=0; i<n; ++i)
if(T[i].parent == NIL) root = i;
setDepth(root, 0); setHeight(root); for(i=0; i<n; ++i) print(i); return 0;
}
ALDS1_7_C-TreeWalk.
Description:

Binary trees are defined recursively. A binary tree T is a structure defined on a finite set of nodes that either

contains no nodes, or

is composed of three disjoint sets of nodes:

  • a root node.
  • a binary tree called its left subtree.
  • a binary tree called its right subtree.

    Your task is to write a program which perform tree walks (systematically traverse all nodes in a tree) based on the following algorithms:

Print the root, the left subtree and right subtree (preorder).

Print the left subtree, the root and right subtree (inorder).

Print the left subtree, right subtree and the root (postorder).

Here, the given binary tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Input:

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n linen, the information of each node is given in the following format:

id left right

id is the node ID, left is ID of the left child and right is ID of the right child. If the node does not have the left (right) child, the left(right) is indicated by -1

Output:

In the 1st line, print "Preorder", and in the 2nd line print a list of node IDs obtained by the preorder tree walk.

In the 3rd line, print "Inorder", and in the 4th line print a list of node IDs obtained by the inorder tree walk.

In the 5th line, print "Postorder", and in the 6th line print a list of node IDs obtained by the postorder tree walk.

Print a space character before each node ID.

Constraints:

1 ≤ n ≤ 25

SampleInput1:

9

0 1 4

1 2 3

2 -1 -1

3 -1 -1

4 5 8

5 6 7

6 -1 -1

7 -1 -1

8 -1 -1

SampleOutput1:

Preorder

0 1 2 3 4 5 6 7 8

Inorder

2 1 3 0 6 5 7 4 8

Postorder

2 3 1 6 7 5 8 4 0

Codes:
//#define LOCAL

#include <cstdio>

#define MAX 10000
#define NIL -1
struct Node { int p, l, r; };
Node T[MAX]; void preParse(int u) {
if(u == NIL) return;
printf(" %d", u);
preParse(T[u].l);
preParse(T[u].r);
} void inParese(int u) {
if(u == NIL) return;
inParese(T[u].l);
printf(" %d", u);
inParese(T[u].r);
} void postParse(int u) {
if(u == NIL) return;
postParse(T[u].l);
postParse(T[u].r);
printf(" %d", u);
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int n, i, v, l, r, root;
scanf("%d", &n);
for(i=0; i<n; ++i) T[i].p = NIL;
for(i=0; i<n; ++i) {
scanf("%d%d%d", &v, &l, &r);
T[v].l = l, T[v].r = r;
if(l != NIL) T[l].p = v;
if(r != NIL) T[r].p = v;
}
for(i=0; i<n; ++i)
if(T[i].p == NIL) root = i; printf("Preorder\n"); preParse(root);
printf("\nInorder\n"); inParese(root);
printf("\nPostorder\n"); postParse(root);
printf("\n"); return 0;
}
ALDS1_7_D-ReconstructionOfTheTree.
Codes:
#include <iostream>
#include <string>
#include <algorithm>
#include <vector>
using namespace std; int n, pos;
vector<int> pre, in, post; void rec(int l, int r) {
if(l >= r) return;
int root = pre[pos++];
int m = distance(in.begin(), find(in.begin(),in.end(),root));
rec(1, m);
rec(m+1, r);
post.push_back(root);
} void solve() {
pos = 0;
rec(0, pre.size());
for(int i=0; i<n; ++i) {
if(i) cout << " ";
cout << post[i];
}
cout << endl;
} int main()
{
int k;
cin >> n;
for(int i=0; i<n; ++i) {
cin >> k;
pre.push_back(k);
}
for(int i=0; i<n; ++i) {
cin >> k;
in.push_back(k);
} solve(); return 0;
}
ALDS1_8_A-BinarySearchTreeI
Codes:
//#define LOCAL

#include <cstdio>
#include <cstdlib> struct Node {
int k;
Node *p, *l, *r;
};
Node *N, *R; void insert(int u) {
Node *a = R, *b = N, *c;
c = (Node *)malloc(sizeof(Node));
c->k = u, c->l = N, c->r = N; while(a != N) {
b = a;
if(c->k < a->k) a = a->l;
else a = a->r;
}
c->p = b;
if(b == N) {
R = c;
} else {
if(c->k < b->k) b->l = c;
else b->r = c;
}
} void inOrder(Node *u) {
if(u == N) return;
inOrder(u->l);
printf(" %d", u->k);
inOrder(u->r);
} void preOrder(Node *u) {
if(u == N) return;
printf(" %d", u->k);
preOrder(u->l);
preOrder(u->r);
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int a, i, n;
char c[10];
scanf("%d", &n);
for(i=0; i<n; ++i) {
scanf("%s", c);
if(c[0] == 'i') {
scanf("%d", &a);
insert(a);
} else {
inOrder(R); printf("\n");
preOrder(R); printf("\n");
}
} return 0;
}
ALDS1_8_B-BinarySearchTreeII
Codes:
//#define LOCAL

#include <cstdio>
#include <cstdlib> struct Node {
int k;
Node *p, *l, *r;
};
Node *N, *R; Node* find(Node *u, int a) {
while(u!=N && a!=u->k) {
if(a < u->k) u = u->l;
else u = u->r;
}
} void insert(int u) {
Node *a = R, *b = N, *c;
c = (Node *)malloc(sizeof(Node));
c->k = u, c->l = N, c->r = N; while(a != N) {
b = a;
if(c->k < a->k) a = a->l;
else a = a->r;
}
c->p = b;
if(b == N) {
R = c;
} else {
if(c->k < b->k) b->l = c;
else b->r = c;
}
} void inOrder(Node *u) {
if(u == N) return;
inOrder(u->l);
printf(" %d", u->k);
inOrder(u->r);
} void preOrder(Node *u) {
if(u == N) return;
printf(" %d", u->k);
preOrder(u->l);
preOrder(u->r);
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int a, i, n;
char c[10];
scanf("%d", &n);
for(i=0; i<n; ++i) {
scanf("%s", c);
if(c[0] == 'f') {
scanf("%d", &a);
Node *t = find(R, a);
if(t != N) printf("yes\n");
else printf("no\n");
} else if(c[0] == 'i'){
scanf("%d", &a);
insert(a);
} else {
inOrder(R); printf("\n");
preOrder(R); printf("\n");
}
} return 0;
}

AOJ/树二叉搜索树习题集的更多相关文章

  1. 树-二叉搜索树-AVL树

    树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路 ...

  2. 数据结构学习笔记_树(二叉搜索树,B-树,B+树,B*树)

    一.查找二叉树(二叉搜索树BST) 1.查找二叉树的性质 1).所有非叶子结点至多拥有两个儿子(Left和Right): 2).所有结点存储一个关键字: 3).非叶子结点的左指针指向小于其关键字的子树 ...

  3. AOJ/树与二叉搜索树习题集

    ALDS1_7_A-RootedTree. Description: A graph G = (V, E) is a data structure where V is a finite set of ...

  4. PAT树_层序遍历叶节点、中序建树后序输出、AVL树的根、二叉树路径存在性判定、奇妙的完全二叉搜索树、最小堆路径、文件路由

    03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top do ...

  5. 二叉搜索树、B树

    二叉搜索树又叫二叉排序树. B树又可写为B-树,“B-树”种的“-”无区分意义. 此外,还有B+树,B*树.

  6. 高度平衡的二叉搜索树(AVL树)

    AVL树的基本概念 AVL树是一种高度平衡的(height balanced)二叉搜索树:对每一个结点x,x的左子树与右子树的高度差(平衡因子)至多为1. 有人也许要问:为什么要有AVL树呢?它有什么 ...

  7. 数据结构中很常见的各种树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

    数据结构中常见的树(BST二叉搜索树.AVL平衡二叉树.RBT红黑树.B-树.B+树.B*树) 二叉排序树.平衡树.红黑树 红黑树----第四篇:一步一图一代码,一定要让你真正彻底明白红黑树 --- ...

  8. 树&二叉树&二叉搜索树

    树&二叉树 树是由节点和边构成,储存元素的集合.节点分根节点.父节点和子节点的概念. 二叉树binary tree,则加了"二叉"(binary),意思是在树中作区分.每个 ...

  9. Java实现二叉搜索树的添加,前序、后序、中序及层序遍历,求树的节点数,求树的最大值、最小值,查找等操作

    什么也不说了,直接上代码. 首先是节点类,大家都懂得 /** * 二叉树的节点类 * * @author HeYufan * * @param <T> */ class Node<T ...

随机推荐

  1. CSS学习之选择器

    html是盖房子,css是将房子装扮的更漂亮一些!CSS(Cascading Style Sheets),值层叠样式表. 语法 选择器 { 属性 : 属性值 ; } 比如, p{color:red;} ...

  2. 利用shell批量改名和linux中取随机数的方法

    先批量创建文件 #!/bin/sh if [ ! -d /tmp/chenyao ] then mkdir /tmp/chenyao -p fi cd /tmp/chenyao ..} do touc ...

  3. bootstrap file input 官方文档翻译

    file Input官方文档 中文翻译 file input 特性 1.这个插件会把简单的html文件变成一个更好用的文件选择输入控件,通过一个html的文件输入框,能兼容那些不支持jquery或js ...

  4. Truncated incorrect DOUBLE value错误

    mysql报错:Truncated incorrect DOUBLE value sql的update语法错误eg: update Person set name = 'auhnayuiL' and ...

  5. Java--JDBC连接数据库

         我们知道Java中的jdbc是用来连接应用程序和数据系统的,本篇文章主要就来看看关于JDBC的实现和使用细节.主要包含以下几点内容: JDBC的基本知识(数据驱动程序) JDBC的连接配置 ...

  6. POPTEST老李推荐:互联网时代100本必读书,来自100位业界大咖推荐 2

    ➤NO.30<移动的力量>[推荐人]刘九如:电子工业出版社副社长兼总编辑邬贺铨:中国工程院院士.原副院长汪力成:华立集团董事局主席➤NO.31<智慧社会>[推荐人]段永朝:财讯 ...

  7. 庆祝POPTEST签约企业培训

    庆祝POPTEST签约企业培训 POPTEST与众多培训企业进行技术PK,由于企业认可POPTEST的技术实力,从众多竞争对手中脱颖而出,成功中标清华控股子公司性能测试培训.

  8. Oracle的基本学习(二)—基本查询

    一.基本查询语句 (1)查看当前用户 show user;   (2)查看当前用户下的表 select * from tab;   (3)查看员工表的结构 desc emp;   (4)选择全部列 S ...

  9. Struts2基础学习(五)—拦截器

    一.概述 1.初识拦截器      Interceptor 拦截器类似前面学过的过滤器,是可以在action执行前后执行的代码,是我们做Web开发经常用到的技术.比如:权限控制.日志等.我们也可以将多 ...

  10. 使用Docker分分钟启动常用应用

    前言 Docker是目前比较火的一个概念,同时也是微服务中比较关键的一个容器化技术.但是,单从理论上好难看出Docker的优势,因此,我希望在这篇文章中提供一些Docker的使用示例,希望从实际应用上 ...