系统:CentOS6.5
JDK:1.8.0_144
Flume:flume-ng-1.6.0-cdh5.12.0

一、什么是Flume

  flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用。Flume 初始的发行版本目前被统称为 Flume OG(original generation),属于 cloudera。但随着 FLume 功能的扩展,Flume OG 代码工程臃肿、核心组件设计不合理、核心配置不标准等缺点暴露出来,尤其是在 Flume OG 的最后一个发行版本 0.94.0 中,日志传输不稳定的现象尤为严重,为了解决这些问题,2011 年 10 月 22 号,cloudera 完成了 Flume-728,对 Flume 进行了里程碑式的改动:重构核心组件、核心配置以及代码架构,重构后的版本统称为 Flume NG(next generation);改动的另一原因是将 Flume 纳入 apache 旗下,cloudera Flume 改名为 Apache Flume。
 
flume的特点:
  flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(比如文本、HDFS、Hbase等)的能力 。
  flume的数据流由事件(Event)贯穿始终。事件是Flume的基本数据单位,它携带日志数据(字节数组形式)并且携带有头信息,这些Event由Agent外部的Source生成,当Source捕获事件后会进行特定的格式化,然后Source会把事件推入(单个或多个)Channel中。你可以把Channel看作是一个缓冲区,它将保存事件直到Sink处理完该事件。Sink负责持久化日志或者把事件推向另一个Source。
 
flume的可靠性 :
  当节点出现故障时,日志能够被传送到其他节点上而不会丢失。Flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;如果数据发送失败,可以重新发送。),Store on failure(这也是scribe采用的策略,当数据接收方crash时,将数据写到本地,待恢复后,继续发送),Besteffort(数据发送到接收方后,不会进行确认)。
 
flume的可恢复性:
  还是靠Channel。推荐使用FileChannel,事件持久化在本地文件系统里(性能较差)。

二、Flume工作原理

Flume的数据流由事件(Event)贯穿始终。事件是Flume的基本数据单位,它携带日志数据(字节数组形式)并且携带有头信息,这些Event由Agent外部的Source生成,当Source捕获事件后会进行特定的格式化,然后Source会把事件推入(单个或多个)Channel中。可以把Channel看作是一个缓冲区,它将保存事件直到Sink处理完该事件。Sink负责持久化日志或者把事件推向另一个Source。以下是Flume的一些核心概念:

(1)Events:一个数据单元,带有一个可选的消息头,可以是日志记录、avro 对象等。

(2)Agent:JVM中一个独立的Flume进程,每台机器运行一个Agent,但一个Agent可以包含多个Source、Channel、Sink组件。

(3)Client:运行于一个独立线程,用于生产数据并将其发送给Agent。

(4)Source:用来消费传递到该组件的Event,从Client收集数据,传递给Channel。

(5)Channel:中转Event的一个临时存储,保存Source组件传递过来的Event,其实就是连接 Source 和 Sink ,有点像一个消息队列。

(6)Sink:从Channel收集数据,运行在一个独立线程。

Flume以Agent为最小的独立运行单位,一个Agent就是一个JVM。单Agent由Source、Sink和Channel三大组件构成,如下图所示:

值得注意的是,Flume提供了大量内置的Source、Channel和Sink类型。不同类型的Source、Channel和Sink可以自由组合。组合方式基于用户设置的配置文件,非常灵活。比如:Channel可以把事件暂存在内存里,也可以持久化到本地硬盘上;Sink可以把日志写入HDFS、HBase、ES甚至是另外一个Source等等。Flume支持用户建立多级流,也就是说多个Agent可以协同工作,并且支持Fan-in、Fan-out、Contextual Routing、Backup Routes,这也正是NB之处。如图所示:

图1

图2

三、下载安装

1.需要JDK1.6+

2.下载版本分为CDH和Apache版本,如果是个人机器集群安装,建议使用CDH版本,CDH的各组件的版本号要对应

CDH5各组件下载地址:http://archive.cloudera.com/cdh5/cdh/5/

3.将下载的包解压出来之后就已经完成了50%,剩下的内容就需要修改一些配置文件

4.设置环境变量

vim ~/.bash_profile
FLUME_HOME="/opt/module/flume"
export PATH=$PATH:$FLUME_HOME/bin
source ~/.bash_profile

验证

/opt/module/flume/bin/flume-ng version

四、修改配置文件

# 指定Agent的组件名称
sunny.sources = so1
sunny.channels = ch1
sunny.sinks = si1

# 指定Flume source要监听的路径(logs/flume目录要提前建立好)
sunny.sources.so1.type = spooldir
sunny.sources.so1.spoolDir = /usr/sunny/logs/flume

# 指定Flume sink
sunny.sinks.si1.type = logger

# 绑定source和sink到channel上
sunny.sinks.si1.channel = ch1
sunny.sources.so1.channels = ch1

# 指定Flume channel
sunny.channels.ch1.type = memory
sunny.channels.ch1.capacity = 1000
sunny.channels.ch1.transactionCapacity = 100

五、启动

cd /opt/module/flume/
bin/flume-ng agent --conf conf --conf-file conf/flume.conf --name sunny -Dflume.root.logger=INFO,console
参数 作用 举例
–conf 或 -c 指定配置文件夹,包含flume-env.sh和log4j的配置文件 –conf conf
–conf-file 或 -f 配置文件地址 –conf-file conf/flume.conf
–name 或 -n agent名称 –name a1
-z zookeeper连接字符串 -z zkhost:2181,zkhost1:2181
-p zookeeper中的存储路径前缀 -p /flume

然后另开一个客户端,新增一个日志文件,编辑内容

cd /usr/sunny/logs/flume
vim test.log

在开启的客户端就可以看到内容

六、其他source

1.Avro

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel that buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
// 运行FlumeAgent,监听本机的44444端口
$ flume-ng agent -c conf -f example/netcat.conf -n a1 -Dflume.root.logger=INFO,console
// 打开另一终端,通过telnet登录localhost的44444,输入测试数据
$ telnet localhost 44444

2.Spool

Spool用于监测配置的目录下新增的文件,并将文件中的数据读取出来。需要注意两点:拷贝到spool目录下的文件不可以再打开编辑、spool目录下不可包含相应的子目录。具体示例如下: 

// 创建两个Flume配置文件
$ cd app/cdh/flume-1.6.0-cdh5.7.1
$ cp conf/flume-conf.properties.template example/spool1.conf
$ cp conf/flume-conf.properties.template example/spool2.conf
// 配置spool1.conf用于监控目录avro_data的文件,将文件内容发送到本地60000端口
$ vim example/spool1.conf
# Namethe components
local1.sources= r1
local1.sinks= k1
local1.channels= c1
# Source
local1.sources.r1.type= spooldir
local1.sources.r1.spoolDir= /home/hadoop/avro_data
# Sink
local1.sinks.k1.type= avro
local1.sinks.k1.hostname= localhost
local1.sinks.k1.port= 60000
#Channel
local1.channels.c1.type= memory
# Bindthe source and sink to the channel
local1.sources.r1.channels= c1
local1.sinks.k1.channel= c1
// 配置spool2.conf用于从本地60000端口获取数据并写入HDFS
# Namethe components
a1.sources= r1
a1.sinks= k1
a1.channels= c1
# Source
a1.sources.r1.type= avro
a1.sources.r1.channels= c1
a1.sources.r1.bind= localhost
a1.sources.r1.port= 60000
# Sink
a1.sinks.k1.type= hdfs
a1.sinks.k1.hdfs.path= hdfs://localhost:9000/user/wcbdd/flumeData
a1.sinks.k1.rollInterval= 0
a1.sinks.k1.hdfs.writeFormat= Text
a1.sinks.k1.hdfs.fileType= DataStream
# Channel
a1.channels.c1.type= memory
a1.channels.c1.capacity= 10000
# Bind the source and sink to the channel
a1.sources.r1.channels= c1
a1.sinks.k1.channel= c1
// 分别打开两个终端,运行如下命令启动两个Flume Agent
$ flume-ng agent -c conf -f example/spool2.conf -n a1
$ flume-ng agent -c conf -f example/spool1.conf -n local1
// 查看本地文件系统中需要监控的avro_data目录内容
$ cd avro_data
$ cat avro_data.txt

Flume内置了大量的Source,其中Avro Source、Thrift Source、Spooling Directory Source、Kafka Source具有较好的性能和较广泛的使用场景。下面是Source的一些参考资料:

(1)*******

(2)*******

(3)*******

(4)*******

(5)*******

(6)*******

(7)*******

(8)*******

七、Flume所支持的Sources、Channels、Sinks

Sources Channels Sinks
  • Avro Source
  • Thrift Source
  • Exec Source
  • JMS Source
  • Spooling Directory Source
  • Twitter 1% firehose Source
  • Kafka Source
  • NetCat Source
  • Sequence Generator Source
  • Syslog Sources
  • Syslog TCP Source
  • Multiport Syslog TCP Source
  • Syslog UDP Source
  • HTTP Source
  • Stress Source
  • Legacy Sources
  • Thrift Legacy Source
  • Custom Source
  • Scribe Source
  • Memory Channel
  • JDBC Channel
  • Kafka Channel
  • File Channel
  • Spillable Memory Channel
  • Pseudo Transaction Channel
  • HDFS Sink
  • Hive Sink
  • Logger Sink
  • Avro Sink
  • Thrift Sink
  • IRC Sink
  • File Roll Sink
  • Null Sink
  • HBaseSink
  • AsyncHBaseSink
  • MorphlineSolrSink
  • ElasticSearchSink
  • Kite Dataset Sink
  • Kafka Sink

【基本知识】Flume基本环境搭建以及原理的更多相关文章

  1. HTML5 移动应用开发环境搭建及原理分析

    开发环境搭建: 一.Android 开发平台搭建 安装java jdk:\\10.194.151.132\Mewfile\tmp\ADT 配置java jdk 1)  新建系统变量,JAVA_HOME ...

  2. 3.移动端自动化测试-appium环境搭建(原理)

    appium自动化原理: 需要服务端(appium启动),手机端(adb连接设备),脚本端(pycharm)就可以进行 自己总结下: 手机和脚本连接:1.adb连接,2靠脚本导入驱动. 脚本和服务端连 ...

  3. 04.flume+kafka环境搭建

    1.flume下载 安装 测试 1.1 官网下载,通过xshell从winser2012传到cent0s的/opt/flume目录中,使用rz命令 1.2 解压安装 tar -zxvf apache- ...

  4. iOS自动化环境搭建——macaca

    macaca-java for ios 自动化环境搭建 基础原理解析:https://testerhome.com/topics/6608 一.环境搭建 1.安装eclipse; -----Java开 ...

  5. Docker学习之——Node.js+MongoDB+Nginx环境搭建(一)

    最近在学习Node.js相关知识,在环境搭建上耗费了不少功夫,故此把这个过程写下来同大家分享一下,今天我先来介绍一下Docker,有很多人都写过相关知识,还有一些教程,在此我只想写一下,我的学习过程中 ...

  6. springmvc工作原理和环境搭建

    SpringMVC工作原理     上面的是springMVC的工作原理图: 1.客户端发出一个http请求给web服务器,web服务器对http请求进行解析,如果匹配DispatcherServle ...

  7. Android编程: 环境搭建、基本知识

    学习的内容两个方面:环境搭建.基本知识 ====环境搭建==== 1.下载 android studio(http://developer.android.com/sdk/index.html) 2. ...

  8. 基于Selenium2+Java的UI自动化(1) - 原理和环境搭建

    一.Selenium2的原理 Selenium1是thoughtworks公司的一个产品经理,为了解决重复烦躁的验收工作,写的一个自动化测试工具,其原理是用JS注入的方 式来模拟人工的操作,但是由于J ...

  9. Flume环境搭建_五种案例

    Flume环境搭建_五种案例 http://flume.apache.org/FlumeUserGuide.html A simple example Here, we give an example ...

随机推荐

  1. armv8 memory system

    在armv8中,由于processor的预取,流水线, 以及多线程并行的执行方式,而且armv8-a中,使用的是一种weakly-ordered memory model, 不保证program or ...

  2. 解释器模式 Interpreter

    代码例子 参考 1.解释器模式定义 给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子. 说明:解释器模式设计到文法规则和抽象语法树. 2.解释器模式的结构 ...

  3. Saiku + Kylin 多维分析平台探索

    背景 为了应对各种数据需求,通常,我们的做法是这样的: 对于临时性的数据需求:写HQL到Hive里去查一遍,然后将结果转为excel发送给需求人员. 对于周期性的.长期性的数据需求:编写脚本,结合Hi ...

  4. sublime text3 快捷键和好用的插件

    常用快捷键: Ctrl + D 选中一个单词 Ctrl + L 选中一行 Ctrl + A 全选 Ctrl + M 选中括号内所有内容 (编写CSS或JS时非常实用) Ctrl + G 快速定位到某一 ...

  5. vue:vue-resource

    vue-resource是一个非常轻量的用于处理HTTP请求的插件,它提供了两种方式来处理HTTP请求: 使用Vue.http或this.$http: 使用Vue.resource或this.$res ...

  6. sql语句查询结果排序

    order by 是用在where条件之后,用来对查询结果进行排序 order by 字段名 asc/desc   asc 表示升序(默认为asc,可以省略)     desc表示降序 order b ...

  7. Always an integer UVALive - 4119

    题目很简单,就是求表达式(P/D)的结果是不是整数.其中P是一个整系数的多项式,D是一个正整数. 把1-k(最高次)+1都试一次就好了.结论可以总结归纳得到.(k取 0, 1, 2 .... 的情况推 ...

  8. Java axis2.jar包详解及缺少jar包错误分析

    Java  axis2.jar包详解及缺少jar包错误分析 一.最小开发jar集 axis2 开发最小jar包集: activation-1.1.jar axiom-api-1.2.13.jar ax ...

  9. MQ选型对比RabbitMQ RocketMQ ActiveMQ Kafka(外加redis对比及其实现)

    rocketmq 4.3开始支持事务https://www.cnblogs.com/hzmark/p/rocket_txn.html 参考:rabbitMQ.activeMQ.zeroMQ.Kafka ...

  10. paymob浙江正和

    #region 上海 ZH //else if (order.SP.Contains("上海") && order.Area.Contains("移动&q ...