各种排序的时间复杂度和空间复杂度

 

以下

冒泡排序,选择排序,插入排序,合并排序,快速排序,希尔排序

 

1 冒泡排序Bubble Sort

冒泡排序Bubble Sort)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。冒泡排序对n个项目需要O(n^2)的比较次数,且可以原地排序。尽管这个算法是最简单了解和实现的排序算法之一,但它对于包含大量的元素的数列排序是很没有效率的。

python支持对两个数字同时交换, a, b = b, a。就可以直接交换a和b的值了。

def bubble_sort(a_list):
exchange = True
pass_num = len(a_list)-1
while pass_num > 0 and exchange:
exchange = False
for i in range(pass_num):
if a_list[i] > a_list[i+1]:
exchange = True
a_list[i], a_list[i+1] = a_list[i+1], a_list[i]
pass_num = pass_num-1
if __name__ == '__main__':
a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
bubble_sort(a_list)
print a_list

2 选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。时间复杂度O(n^2)

def selection_sort(a_list):
for full_slot in range(len(a_list)-1, 0, -1):
pos_max = 0
for location in range(1, full_slot+1):
if a_list[location] > a_list[pos_max]:
pos_max = location
a_list[full_slot], a_list[pos_max] = a_list[pos_max], a_list[full_slot] if __name__ == '__main__':
a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
selection_sort(a_list)
print a_list

3 插入排序

插入排序(Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

def insertion_sort(a_list):
for index in range(1, len(a_list)):
current = a_list[index]
position = index
while position > 0 and a_list[position-1] > current:
a_list[position] = a_list[position-1]
position = position -1
a_list[position] = current
a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
insertion_sort(a_list)
print a_list

4 合并排序

典型的是二路合并排序,将原始数据集分成两部分(不一定能够均分),分别对它们进行排序,然后将排序后的子数据集进行合并,这是典型的分治法策略。时间复杂度O(nlogn)

def merge_sort(a_list):
print "Splitting", a_list
if len(a_list) > 1:
mid = len(a_list) //2
left_half = a_list[:mid]
right_half = a_list[mid:]
merge_sort(left_half)
merge_sort(right_half)
i = 0
j = 0
k = 0
while i < len(left_half) and j < len(right_half):
if left_half[i] < right_half[j]:
a_list[k] = left_half[i]
i = i+1
else:
a_list[k] = right_half[j]
j = j+1
k = k+1
while i < len(left_half):
a_list[k] = left_half[i]
i = i+1
k = k+1
while j < len(right_half):
a_list[k] = right_half[j]
j = j+1
k = k+1
print "Merging", a_list a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
merge_sort(a_list)
print a_list

5 快速排序

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列

def quick_sort(a_list):
quick_sort_helper(a_list, 0, len(a_list)-1) def quick_sort_helper(a_list, first, last):
if first < last:
split_point = partition(a_list, first, last)
quick_sort_helper(a_list, first, split_point - 1)
quick_sort_helper(a_list, split_point + 1, last) def partition(a_list, first, last):
pivot_value = a_list[first]
left_mark = first +1
right_mark = last
done = False
while not done:
while left_mark <= right_mark and a_list[left_mark] <= pivot_value:
left_mark = left_mark +1
while a_list[right_mark] >= pivot_value and right_mark >= left_mark:
right_mark = right_mark-1
if right_mark < left_mark:
done = True
else:
temp = a_list[left_mark]
a_list[left_mark] = a_list[right_mark]
a_list[right_mark] = temp
temp = a_list[first]
a_list[first] =a_list[right_mark]
a_list[right_mark] =temp
return right_mark a_list = [54, 26, 93, 17, 77, 31, 44, 50, 20]
quick_sort(a_list)
print a_list

6 希尔排序

类似合并排序和插入排序的结合体,二路合并排序将原来的数组分成左右两部分,希尔排序则将数组按照一定的间隔分成几部分,每部分采用插入排序来排序,有意思的是这样做了之后,元素很多情况下就差不多在它应该呆的位置,所以效率不一定比插入排序差。

def shell_sort(a_list):
#how many sublists, also how many elements in a sublist
sublist_count = len(a_list) // 2
while sublist_count > 0:
for start_position in range(sublist_count):
gap_insertion_sort(a_list, start_position, sublist_count)
print("After increments of size", sublist_count, "The list is", a_list)
sublist_count = sublist_count // 2 def gap_insertion_sort(a_list, start, gap):
#start+gap is the second element in this sublist
for i in range(start + gap, len(a_list), gap):
current_value = a_list[i]
position = i
while position >= gap and a_list[position - gap] > current_value:
a_list[position] = a_list[position - gap] #move backward
position = position - gap
a_list[position] = current_value a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20, 88]
shell_sort(a_list)
print(a_list)

Python 数据结构--排序的更多相关文章

  1. python数据结构与算法

    最近忙着准备各种笔试的东西,主要看什么数据结构啊,算法啦,balahbalah啊,以前一直就没看过这些,就挑了本简单的<啊哈算法>入门,不过里面的数据结构和算法都是用C语言写的,而自己对p ...

  2. Python数据结构与算法--算法分析

    在计算机科学中,算法分析(Analysis of algorithm)是分析执行一个给定算法需要消耗的计算资源数量(例如计算时间,存储器使用等)的过程.算法的效率或复杂度在理论上表示为一个函数.其定义 ...

  3. python拓扑排序

    发现自己并没有真的理解拓扑排序和多重继承,再次学习了下 拓扑排序要满足如下两个条件 每个顶点出现且只出现一次. 若A在序列中排在B的前面,则在图中不存在从B到A的路径. 拓扑排序算法 任何无回路的顶点 ...

  4. python常见排序算法解析

    python——常见排序算法解析   算法是程序员的灵魂. 下面的博文是我整理的感觉还不错的算法实现 原理的理解是最重要的,我会常回来看看,并坚持每天刷leetcode 本篇主要实现九(八)大排序算法 ...

  5. 第四百一十五节,python常用排序算法学习

    第四百一十五节,python常用排序算法学习 常用排序 名称 复杂度 说明 备注 冒泡排序Bubble Sort O(N*N) 将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮 ...

  6. python数据结构之直接插入排序

    python数据结构之直接插入排序 #-*-encoding:utf-8-*- ''' 直接插入排序: 从序列的第二个元素开始,依次与前一个元素比较,如果该元素比前一个元素大, 那么交换这两个元素.该 ...

  7. Python - 数据结构 - 第十五天

    Python 数据结构 本章节我们主要结合前面所学的知识点来介绍Python数据结构. 列表 Python中列表是可变的,这是它区别于字符串和元组的最重要的特点,一句话概括即:列表可以修改,而字符串和 ...

  8. python 经典排序算法

    python 经典排序算法 排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存.常见的内部排序算 ...

  9. 送你一个Python 数据排序的好方法

    摘要:学习 Pandas排序方法是开始或练习使用 Python进行基本数据分析的好方法.最常见的数据分析是使用电子表格.SQL或pandas 完成的.使用 Pandas 的一大优点是它可以处理大量数据 ...

随机推荐

  1. suse11安装mysql5.7

    下载地址http://mirrors.sohu.com/mysql/MySQL-5.7/ 1.    wget -c  http://mirrors.sohu.com/mysql/MySQL-5.7/ ...

  2. (二)使用数组长度实现ADT bag(java)

    目录 1.使用固定大小的数组实现ADT bag 包 1.1 一组核心方法 1.2 实现核心方法   1.3 让实现安全 1.4 测试核心方法 1.5 实现更多的方法 1.6 删除项的方法 1.7 测试 ...

  3. 函数式编程语言(Fuction Program Language)

    一.什么是函数式编程语言 函数式编程语言(functional progarm language)一类程序设计语言,是一种非冯·诺伊曼式的程序设计语言.函数式语言主要成分是原始函数.定义函数和函数型. ...

  4. php-fpm占用cpu和内存过高100% 解决办法

    参考网站: https://www.fujieace.com/php/php-fpm.html https://www.fujieace.com/php/pm-max_children-2.html ...

  5. [LeetCode] 108. Convert Sorted Array to Binary Search Tree ☆(升序数组转换成一个平衡二叉树)

    108. Convert Sorted Array to Binary Search Tree 描述 Given an array where elements are sorted in ascen ...

  6. redisObject

    typedef struct redisObject {    unsigned type:4;    unsigned encoding:4;    unsigned lru:REDIS_LRU_B ...

  7. Linux磁盘性能分析(CentOS)

    1.top查看CPU是否长时间等待IO top %wa超过30%,说明IO压力很大 2.iostat查看磁盘工作时长占比 iostat -x #1表示1秒刷新一次 %util表示在过去的时间段中磁盘进 ...

  8. 系统相关的信息模块: import sys

    系统相关的信息模块: import sys sys.argv 是一个 list,包含所有的命令行参数. sys.stdout sys.stdin sys.stderr 分别表示标准输入输出,错误输出的 ...

  9. Net Core2.0 升级到.Net Core 2.1

    1. 安装新 .Net Core SDK 2.1 2. 升级VS.net 到15.7, 这个版本极其不好用,IIS打中文会自动退出,但现在也没办法降级了.只能等微软打补丁. 3. 对于面向 ASP.N ...

  10. matlab global persistent变量

    global变量是全局的,在使用global变量的函数里需要用global声明所使用的变量. persistent类似global,不过仅对当前函数有作用,这样避免了外面的影响.当这个函数被clear ...