NameNode元数据目录分析

在第一次部署好Hadoop集群的时候,我们需要在NameNode(NN)节点上格式化磁盘:

$HADOOP_HOME/bin/hdfs namenode -format

格式化完成之后,将会在$dfs.namenode.name.dir/current目录下如下的文件结构

current/
|-- VERSION
|-- edits_*
|-- fsimage_0000000000008547077
|-- fsimage_0000000000008547077.md5
`-- seen_txid

其中的dfs.name.dir是在hdfs-site.xml文件中配置的,默认值如下:

<property>
  <name>dfs.name.dir</name>
  <value>file://${hadoop.tmp.dir}/dfs/name</value>
</property>
 
hadoop.tmp.dir是在core-site.xml中配置的,默认值如下
<property>
  <name>hadoop.tmp.dir</name>
  <value>/tmp/hadoop-${user.name}</value>
  <description>A base for other temporary directories.</description>
</property>

dfs.namenode.name.dir属性可以配置多个目录,

如/data1/dfs/name,/data2/dfs/name,/data3/dfs/name,....。各个目录存储的文件结构和内容都完全一样,相当于备份,这样做的好处是当其中一个目录损坏了,也不会影响到Hadoop的元数据,特别是当其中一个目录是NFS(网络文件系统Network File System,NFS)之上,即使你这台机器损坏了,元数据也得到保存。
下面对$dfs.namenode.name.dir/current/目录下的文件进行解释。
1、VERSION文件是Java属性文件,内容大致如下:

#Fri Nov 15 19:47:46 CST 2013
namespaceID=934548976
clusterID=CID-cdff7d73-93cd-4783-9399-0a22e6dce196
cTime=0
storageType=NAME_NODE
blockpoolID=BP-893790215-192.168.24.72-1383809616115
layoutVersion=-47

其中
  (1)namespaceID是文件系统的唯一标识符,在文件系统首次格式化之后生成的;
  (2)storageType说明这个文件存储的是什么进程的数据结构信息(如果是DataNode,storageType=DATA_NODE);
  (3)cTime表示NameNode存储时间的创建时间,由于我的NameNode没有更新过,所以这里的记录值为0,以后对NameNode升级之后,cTime将会记录更新时间戳;
  (4)layoutVersion表示HDFS永久性数据结构的版本信息, 只要数据结构变更,版本号也要递减,此时的HDFS也需要升级,否则磁盘仍旧是使用旧版本的数据结构,这会导致新版本的NameNode无法使用;
  (5)clusterID是系统生成或手动指定的集群ID,在-clusterid选项中可以使用它;如下说明

a、使用如下命令格式化一个Namenode:


$HADOOP_HOME/bin/hdfs namenode -format [-clusterId <cluster_id>]


选择一个唯一的cluster_id,并且这个cluster_id不能与环境中其他集群有冲突。如果没有提供cluster_id,则会自动生成一个唯一的ClusterID。

b、使用如下命令格式化其他Namenode:


$HADOOP_HOME/bin/hdfs namenode -format -clusterId <cluster_id>


c、升级集群至最新版本。在升级过程中需要提供一个ClusterID,例如:


$HADOOP_PREFIX_HOME/bin/hdfs start namenode --config $HADOOP_CONF_DIR  -upgrade -clusterId <cluster_ID>


如果没有提供ClusterID,则会自动生成一个ClusterID。

  (6)blockpoolID:是针对每一个Namespace所对应的blockpool的ID,上面的这个BP-893790215-192.168.24.72-1383809616115就是在我的ns1的namespace下的存储块池的ID,这个ID包括了其对应的NameNode节点的ip地址。
  
2、$dfs.namenode.name.dir/current/seen_txid非常重要,是存放transactionId的文件,format之后是0,它代表的是namenode里面的edits_*文件的尾数,namenode重启的时候,会按照seen_txid的数字,循序从头跑edits_0000001~到seen_txid的数字。所以当你的hdfs发生异常重启的时候,一定要比对seen_txid内的数字是不是你edits最后的尾数,不然会发生建置namenode时metaData的资料有缺少,导致误删Datanode上多余Block的资讯。

3、$dfs.namenode.name.dir/current目录下在format的同时也会生成fsimage和edits文件,及其对应的md5校验文件。

补充:seen_txid

文件中记录的是edits滚动的序号,每次重启namenode时,namenode就知道要将哪些edits进行加载edits

元数据的存储机制

首先,我们假设如果存储在Namenode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。

因此,元数据需要存放在内存中。但如果只存在内存中,一旦断点,元数据丢失,整个集群就无法工作了!!

!因此必须在磁盘中有备份,在磁盘中的备份就是fsImage,存放在Namenode节点对应的磁盘中。

当在内存中的元数据更新时,如果同时更新fsImage镜像文件(文件的随机读写),会导致效率过低,

但如果不更新,就会发生一致性问题,一旦Namenode节点断电,就会产生数据丢失。

因此,引入操作日志文件edits.log(只进行追加操作,效率很高)。

每当元数据有更新或者添加元数据时,修改内存中的元数据并追加到edits.log中。

这样,一旦Namenode节点断电,可以通过镜像文件fsImage和edits.log的合并,合成元数据。

但是,如果长时间添加数据到edit.log中,会导致该文件数据过大,效率降低且一旦断电,恢复元数据需要的时间过长。

因此,需要定期进行fsImage和edits.log的合并,如果这个操作由Namenode节点完成,又会效率过低。

因此,引入一个新的secondaryNamenode,专门用于fsImage和edits.log的合并。

Hadoop 目录分析及存储机制的更多相关文章

  1. Java提高篇——通过分析 JDK 源代码研究 Hash 存储机制

    HashMap 和 HashSet 是 Java Collection Framework 的两个重要成员,其中 HashMap 是 Map 接口的常用实现类,HashSet 是 Set 接口的常用实 ...

  2. 通过分析 JDK 源代码研究 Hash 存储机制--转载

    通过 HashMap.HashSet 的源代码分析其 Hash 存储机制 集合和引用 就像引用类型的数组一样,当我们把 Java 对象放入数组之时,并不是真正的把 Java 对象放入数组中,只是把对象 ...

  3. Hadoop HDFS元数据目录分析

    元数据目录分析 在第一次部署好Hadoop集群的时候,我们需要在NameNode(NN)节点上格式化磁盘: $HADOOP_HOME/bin/hdfs namenode -format 格式化完成之后 ...

  4. 【RabbitMQ学习记录】- 消息队列存储机制源码分析

    本文来自 网易云社区 . RabbitMQ在金融系统,OpenStack内部组件通信和通信领域应用广泛,它部署简单,管理界面内容丰富使用十分方便.笔者最近在研究RabbitMQ部署运维和代码架构,本篇 ...

  5. 通过分析 JDK 源代码研究 Hash 存储机制

    通过 HashMap.HashSet 的源代码分析其 Hash 存储机制 实际上,HashSet 和 HashMap 之间有很多相似之处,对于 HashSet 而言,系统采用 Hash 算法决定集合元 ...

  6. kafka知识体系-kafka设计和原理分析-kafka文件存储机制

    kafka文件存储机制 topic中partition存储分布 假设实验环境中Kafka集群只有一个broker,xxx/message-folder为数据文件存储根目录,在Kafka broker中 ...

  7. java-通过 HashMap、HashSet 的源码分析其 Hash 存储机制

    通过 HashMap.HashSet 的源码分析其 Hash 存储机制 集合和引用 就像引用类型的数组一样,当我们把 Java 对象放入数组之时,并非真正的把 Java 对象放入数组中.仅仅是把对象的 ...

  8. 在HDInsight中从Hadoop的兼容BLOB存储查询大数据的分析

    在HDInsight中从Hadoop的兼容BLOB存储查询大数据的分析 低成本的Blob存储是一个强大的.通用的Hadoop兼容Azure存储解决方式无缝集成HDInsight.通过Hadoop分布式 ...

  9. HTML5分析实战Web存储机制(Web Storage)

    Web Storage它是Key-Value在持久性数据存储的形式.Web Storage为了克服cookie把所引起的一些限制.当数据需要严格格控制client准时,没有必要不断地发回数据serve ...

随机推荐

  1. 简单的SpringWebFlow例子及遇到的问题

    这段时间在看<Spring 实战>里面有讲Spring Web Flow,觉得里面的例子过于复杂,不适合新手,于是在网上找了个例子,跟着写 以下是项目的目录,我是基于maven搭建项目的 ...

  2. Allocation-Free Collections

    假设你有一个方法,通过创建临时的List来收集某些数据,并根据这些数据来统计信息,然后销毁这个临时列表.这个方法被经常调用,导致大量内存分配和释放以及增加的内存碎片.此外,所有这些内存管理都需要时间, ...

  3. 深入了解HyperServer

    本文,我们将尝试深入了解uniGUI HyperServer. 可以将HyperServer所有功能分成三类: HyperServer和稳定性 HyperServer和可扩展性 HyperServer ...

  4. 日期和API

    Java1.0对日期和时间的支持只能依赖java.util.Date类,年份的起始选择是1900你那,月份的起始是从0开始计算的.它的返回值中包含了JVM的默认市区CET,即中欧时间.在Java1.1 ...

  5. SQL注入之Sqli-labs系列第十九关(基于头部的Referer POST报错注入)

    开始挑战第十八关(Header Injection- Referer- Error Based- string) 先来说下HTTP Referer: HTTP Referer是header的一部分,当 ...

  6. 拿到iframe页面里面的变量及元素的方法

    先严重差评一下,用这种方法window.parent.document.frames['layui-layer-iframe1']不行!而且frames方法存在浏览器不兼容问题(貌似火狐不行) 页面d ...

  7. 2.25 js处理多窗口

    2.25 js处理多窗口 前言在打开页面上链接的时候,经常会弹出另外一个窗口(多窗口情况前面这篇有讲解:Selenium2+python自动化13-多窗口.句柄(handle)),这样在多个窗口之间来 ...

  8. logminer使用测试库进行挖掘分析,10.2.0.5

    上一篇测试是在dg环境进行测试挖掘,但是如果客户存在一个测试库,那样使用日志挖掘的影响性更小.本篇进行测试分析. 测试环境介绍: oracle linux  5.6,vmware虚拟机,安装两套单实例 ...

  9. JavaBasic_09

    方法的参数传递 方法调用时参数值的传递可以分为"值传递"和"引用传递"两种 值传递 - a.当方法的参数为基本数据类型时 b.实参的值被复制给形参,改变形参不会 ...

  10. 后台管理Models

    1.后台的配置 登录地址 :http://localhost:8000/admin 创建后台管理员(超级用户): 在终端输入:./manage.py createsuperuser Username ...