D. Block Tower
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

After too much playing on paper, Iahub has switched to computer games. The game he plays is called "Block Towers". It is played in a rectangular grid with n rows and m columns (it contains n × m cells). The goal of the game is to build your own city. Some cells in the grid are big holes, where Iahub can't build any building. The rest of cells are empty. In some empty cell Iahub can build exactly one tower of two following types:

  1. Blue towers. Each has population limit equal to 100.
  2. Red towers. Each has population limit equal to 200. However, it can be built in some cell only if in that moment at least one of the neighbouring cells has a Blue Tower. Two cells are neighbours is they share a side.

Iahub is also allowed to destroy a building from any cell. He can do this operation as much as he wants. After destroying a building, the other buildings are not influenced, and the destroyed cell becomes empty (so Iahub can build a tower in this cell if needed, see the second example for such a case).

Iahub can convince as many population as he wants to come into his city. So he needs to configure his city to allow maximum population possible. Therefore he should find a sequence of operations that builds the city in an optimal way, so that total population limit is as large as possible.

He says he's the best at this game, but he doesn't have the optimal solution. Write a program that calculates the optimal one, to show him that he's not as good as he thinks.

Input

The first line of the input contains two integers n and m (1 ≤ n, m ≤ 500). Each of the next n lines contains m characters, describing the grid. The j-th character in the i-th line is '.' if you're allowed to build at the cell with coordinates (i, j) a tower (empty cell) or '#' if there is a big hole there.

Output

Print an integer k in the first line (0 ≤ k ≤ 106) — the number of operations Iahub should perform to obtain optimal result.

Each of the following k lines must contain a single operation in the following format:

  1. «B x y» (1 ≤ x ≤ n, 1 ≤ y ≤ m) — building a blue tower at the cell (x, y);
  2. «R x y» (1 ≤ x ≤ n, 1 ≤ y ≤ m) — building a red tower at the cell (x, y);
  3. «D x y» (1 ≤ x ≤ n, 1 ≤ y ≤ m) — destroying a tower at the cell (x, y).

If there are multiple solutions you can output any of them. Note, that you shouldn't minimize the number of operations.

Examples
input
2 3
..#
.#.
output
4
B 1 1
R 1 2
R 2 1
B 2 3
input
1 3
...
output
5
B 1 1
B 1 2
R 1 3
D 1 2
R 1 2

题目链接

题意 

  给一个n*m的方格,其中有障碍‘#’和空地‘ . ’,可以在空地上建房子,B房子价值100,R房子价值200(R房子必须建在B房子旁边),此外,还能摧毁房子并建上新的房子。问在这样一张地图上如何使建房子的收益最大?不限制步数。

分析 

  由于不限制步数,我们可以用比较取巧的方法,即每个联通块只建一座B房子,其余都是R房子。这是可以实现的,首先把空地全部涂上B,再从边界一边拆B一边建R,最后只会剩下一个B。这个边界的寻找比较麻烦,我们考虑dfs,深度搜索联通块到底再回溯摧毁B建R。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include <queue>
using namespace std;
typedef long long LL;
const int maxn = 1e6+;
const int mod = +;
typedef pair<int,int> pii;
#define X first
#define Y second
#define pb push_back
#define mp make_pair
#define ms(a,b) memset(a,b,sizeof(a))
char res[maxn];
vector<pair<int,int> > v;
char mg[][]; int k=;
int n,m;
void add(char a,int x,int y){ res[k++]=a;
v.push_back(make_pair(x,y));
mg[x][y]=a;
// cout<<ans<<endl;
}
int dir[][]={
{,},{-,},
{,},{,-}
};
void dfs(int x,int y,int dep){
add('B',x,y);
for(int i=;i<;i++){
int dx=x+dir[i][];
int dy=y+dir[i][];
if(dx<||dx>n||dy<||dy>m) continue;
if(mg[dx][dy]=='.')
dfs(dx,dy,dep+);
}
if(dep){
add('D',x,y);
add('R',x,y);
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%s",mg[i]+);
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(mg[i][j]=='.'){
dfs(i,j,);
}
}
}
cout<<k<<endl;
for(int i=;i<k;i++){
printf("%c %d %d\n",res[i],v[i].first,v[i].second);
}
return ;
}

CodeForces - 327D Block Tower的更多相关文章

  1. CF 327D - Block Tower 数学题 DFS 初看很难,想通了就感觉很简单

    D. Block Tower time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  2. CoderForces 327D Block Tower

    Portal:http://codeforces.com/problemset/problem/327/D 一座红塔200人,一座蓝塔100人,只有与蓝塔相邻才可以建红塔. '.'处可建塔 '#'处不 ...

  3. Codeforces Round #191 (Div. 2) D. Block Tower

    D. Block Tower time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  4. Codeforces 626C Block Towers(二分)

    C. Block Towers time limit per test:2 seconds memory limit per test:256 megabytes input:standard inp ...

  5. CodeForces - 906D Power Tower(欧拉降幂定理)

    Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...

  6. codeforces 488A. Giga Tower 解题报告

    题目链接:http://codeforces.com/problemset/problem/488/A 题目意思:给出一个数a,范围是[-10^9, 10^9],问它最少需要加的一个正整数 b 是多少 ...

  7. [Codeforces]906D Power Tower

    虽说是一道裸题,但还是让小C学到了一点姿势的. Description 给定一个长度为n的数组w,模数m和询问次数q,每次询问给定l,r,求: 对m取模的值. Input 第一行两个整数n,m,表示数 ...

  8. CodeForces 907F Power Tower(扩展欧拉定理)

    Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is u ...

  9. Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)

    题目链接  Power Tower 题意  给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$  对m取模的值 根据这个公式 每次 ...

随机推荐

  1. linux 清空history以及记录原理

    1.当前session执行的命令,放置缓存中,执行exit时,把缓存信息写入~/.bash_history 2.当session直接被kill时,缓存中的历史命令不会写入~/.bash_history ...

  2. [转帖]Lifetime Support Stages for Your Oracle Products

    Lifetime Support Stages for Your Oracle Products https://www.oracle.com/support/lifetime-support/ Pr ...

  3. Java占位符

    一.背景 在使用java开发的过程中,经常需要使用将字符串拼接到一起(比如,用于日志输出),常用方法如下: 使用+将不同字符串进行拼接 使用StringBuilder 使用String.format ...

  4. centos 7 修改系统屏幕分辨率

    centos 7 修改系统屏幕分辨率,命令方式和图形方式的修改方法. 命令:xrandr 通过命令 xrandr 修改系统的分辨率,输入xrandr: bash [admin@localhost ~] ...

  5. C# 语言习惯

    目录 一.使用属性而不是可访问的数据成员 二.使用运行时常量(readonly)而不是编译时常量(const) 三.推荐使用 is 或 as 操作符而不是强制类型转换 四.使用 Conditional ...

  6. face detection,landmark, recognition with deeplearning

    人脸特征点定位 Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks c ...

  7. codeforces116B

    Little Pigs and Wolves CodeForces - 116B Once upon a time there were several little pigs and several ...

  8. BZOJ3456 城市规划(多项式求逆)

    设f[i]为连通图的数量,g[i]为不连通图的数量,显然有f[i]=2i*(i-1)/2-g[i],g[i]通过枚举1所在连通块大小转移,有g[i]=Σf[j]*C(i-1,j-1)·2(i-j)*( ...

  9. python -- 面向对象三大特性

    1,继承 1,初识继承 什么是继承? ——继承是一种创建新类的方式,在python中,新建的类可以继承一个或多个父类,父类又可称为基类或超类,新建的类称为派生类或子类. 子类会“遗传”父类的属性,从而 ...

  10. MD5 SHA1 CRC32

    md5: import hashlib md5 = hashlib.md5() md5.update(bytes('http://www.baidu.com',encoding="utf-8 ...