upd 19.11.15

分 段 打 表


又是有关于\(1-n\)排列的题,考虑从大到小依次插入构造排列

对于第\(i\)个数(也就是\(n-i+1\)),只有当它插在当前排列最前面时才会使那个什么数的个数+1,而在最前面的概率为\(\frac{1}{i}\),所以插入\(i\)增加的什么数的期望个数为\(\frac{1}{i}\),所以答案就是\(\sum_{i=1}^n \frac{1}{i}\)

但是这题\(n\)有\(2^{31}-1\)那么多,,,

这时要用到一个新东西--调和级数

这个数就是\(\sum_{i=1}^n \frac{1}{i}=ln\ (n+1)+\gamma(\gamma\)为欧拉-马歇罗尼常数\()\)

证明是不可能证明的,这辈子都不可能的

当然\(n\)过大才能用调和级数,不然会炸精度

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#define LL long long
#define il inline
#define re register using namespace std;
const LL mod=1000000;
const double EMc=0.577215664901;
il LL rd()
{
re LL x=0,w=1;re char ch;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n;
double ans; int main()
{
n=rd();
if(n<=1000000) for(double i=1;i<=n;i++) ans+=1.00/i;
else ans=log(n+1)+EMc;
printf("%.8lf\n",ans);
return 0;
}

luogu P1943 LocalMaxima_NOI导刊2009提高(1)的更多相关文章

  1. 洛谷P1943 LocalMaxima_NOI导刊2009提高(1)(分段打表)

    显然只需要算出每个数比前面所有数大的期望然后全部加起来就好了,一个数的期望怎么算呢? 对于一个数我们需要考虑比它大的数,因为比它小的数放它前面放它后面都可以,但是比它大的数只能放它后面.考虑大于等于它 ...

  2. 洛谷 P1943 LocalMaxima_NOI导刊2009提高(1)

    我们先考虑第i大数,比它大的数有(n-i)个,显然要使i是Local Maxima,比它大的数必须放在它后面,那么它是Local Maxima的期望是: 那么n个数中Local Maxima个数的期望 ...

  3. LocalMaxima_NOI导刊2009提高(1)

    先打表,发现\(ans=\sum_{i=1}^n\frac{1}{i}\) 对于小数据可以直接打表 数据很大时,精度相对就比较宽松 欧拉-马斯刻若尼常数=调和级数-自然对数 调和级数为:\(\sum_ ...

  4. 洛谷 P1952 火星上的加法运算_NOI导刊2009提高(3)

    P1952 火星上的加法运算_NOI导刊2009提高(3) 题目描述 最近欢欢看到一本有关火星的书籍,其中她被一个加法运算所困惑,由于她的运算水平有限.她想向你求助,作为一位优秀的程序员,你当然不会拒 ...

  5. 洛谷 P1950 长方形_NOI导刊2009提高(2)

    传送门 思路 首先定义\(h\)数组,\(h[i][j]\)表示第\(i\)行第\(j\)列最多可以向上延伸多长(直到一个被用过的格子) 然后使用单调栈算出 \(l_i\)和 \(r_i\) ,分别是 ...

  6. 洛谷 P1950 长方形_NOI导刊2009提高(2) 题解

    P1950 长方形_NOI导刊2009提高(2) 题目描述 小明今天突发奇想,想从一张用过的纸中剪出一个长方形. 为了简化问题,小明做出如下规定: (1)这张纸的长宽分别为n,m.小明讲这张纸看成是由 ...

  7. P1944 最长括号匹配_NOI导刊2009提高(1)

    P1944 最长括号匹配_NOI导刊2009提高 题解 宁愿相信世上有鬼,也不能随便相信某谷题目标签 我想了半天然后看了眼题解,发现用栈来模拟就好了 栈来模拟,还要用到一个bool数组,标记是否已经匹 ...

  8. [luogu]P1800 software_NOI导刊2010提高(06)[DP][二分答案]

    [luogu]P1800 software_NOI导刊2010提高(06) 题目描述 一个软件开发公司同时要开发两个软件,并且要同时交付给用户,现在公司为了尽快完成这一任务,将每个软件划分成m个模块, ...

  9. 洛谷 P1951 收费站_NOI导刊2009提高(2) 最短路+二分

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例: 输出样例: 说明 思路 AC代码 总结 题面 题目链接 P1951 收费站_NOI导刊2009提高(2) 其 ...

随机推荐

  1. html image 圖像路徑

    src可以指定image路徑: alt可以設置替代的文本:當瀏覽器沒有辦法加載到圖片的時候,就會顯示替換的文本,提示什麼圖片未加載. width和heigt可以設置圖片的大小,從而對圖片進行縮放. h ...

  2. fix

    rounds the elements of A toward zero, resulting in an array of integers. For complex A, the imaginar ...

  3. codeforces710B

    Optimal Point on a Line CodeForces - 710B You are given n points on a line with their coordinates xi ...

  4. BZOJ2557[Poi2011]Programming Contest——匈牙利算法+模拟费用流

    题目描述 Bartie and his friends compete in the Team Programming Contest. There are n contestants on each ...

  5. 【Linux】Centos6.8下一键安装Lamp环境

    [下载地址] 以下三种都是快捷安装环境的工具,都提供相应的脚本,原理都相同,一个会了其他的也就都会了,我用的比较多的会是lnmp和oneinstack,最近在用的都是oneinstack,挺好用的. ...

  6. LightOJ - 1356 Prime Independence (二分图 最大独立集 素数打表)

    题意: 给你一个集合,让你从这个集合中挑选出几个数,使得这几个数中任意两个数相除后的值不能为素数 即挑选出来的这几个数不能互相冲突 最大独立集 = 所有点数 - 最大匹配数 呵..呵...原先用的二维 ...

  7. xml文件格式化后不能获取到值

    在有些时候,我们要使用到xml文件,必须得将文件中的内容压缩成一行,才能读取到其中的值,一旦有换行符.制表符.空格之类的就读不到.所以只能在开发好以后,将代码压缩再执行,十分不方便. 尝试了几个替换符 ...

  8. python的多线程到底有没有用?

    在群里经常听到这样的争执,有人是虚心请教问题,有人就大放厥词因为这个说python辣鸡.而争论的核心无非就是,python的多线程在同一时刻只会有一条线程跑在CPU里面,其他线程都在睡觉.这是真的吗? ...

  9. python构建bp神经网络_曲线拟合(一个隐藏层)__2.代码实现

    IDE:jupyter 抽象程度可能不是那么高,以后再优化. 理论和代码实现的差距还是挺大的 数据集请查看 python构建bp神经网络(一个隐藏层)__1.数据可视化 部分代码预览 git上传.ip ...

  10. Git分支合并

    大致描述一下 上次为了解决bug新建了一个bugfix分支,并提交了c5(这个1,2,3,4,5具体的可能和图片对应不太一样,但是结构一样),下面就该把bugfix与master进行整合,整合之后就可 ...