[TensorBoard] Train and Test accuracy simultaneous tracking
训练时的实时状态跟踪的重要性 不言而喻。
[Tensorboard] Cookbook - Tensorboard 讲解调节更新频率
直接上代码展示:
import numpy as np
import tensorflow as tf
from random import randint
import datetime
import os
import time import implementation as imp batch_size = imp.batch_size
iterations = 20001
seq_length = 40 # Maximum length of sentence checkpoints_dir = "./checkpoints" def getTrainBatch():
labels = []
arr = np.zeros([batch_size, seq_length])
for i in range(batch_size):
if (i % 2 == 0):
num = randint(0, 11499)
labels.append([1, 0])
else:
num = randint(12500, 23999)
labels.append([0, 1])
arr[i] = training_data[num]
return arr, labels def getTestBatch():
labels = []
arr = np.zeros([batch_size, seq_length])
for i in range(batch_size):
if (i % 2 == 0):
num = randint(11500, 12499)
labels.append([1, 0])
else:
num = randint(24000, 24999)
labels.append([0, 1])
arr[i] = training_data[num]
return arr, labels ############################################################################### # Call implementation
glove_array, glove_dict = imp.load_glove_embeddings()
training_data = imp.load_data(glove_dict)
input_data, labels, optimizer, accuracy, loss, dropout_keep_prob = imp.define_graph(glove_array) ############################################################################### # tensorboard
train_accuracy_op = tf.summary.scalar("training_accuracy", accuracy)
tf.summary.scalar("loss", loss)
summary_op = tf.summary.merge_all() # saver
all_saver = tf.train.Saver() sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer()) logdir_train = "tensorboard/" + datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S-train") + "/"
writer_train = tf.summary.FileWriter(logdir_train, sess.graph) logdir_test = "tensorboard/" + datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S-test") + "/"
writer_test= tf.summary.FileWriter(logdir_test, sess.graph) timePoint1 = time.time()
timePoint2 = time.time()
for i in range(iterations):
batch_data, batch_labels = getTrainBatch()
batch_data_test, batch_labels_test = getTestBatch() # Set the dropout_keep_prob
# 1.0: dropout is invalid.
# 0.5: dropout is 0.5
sess.run(optimizer, {input_data: batch_data, labels: batch_labels, dropout_keep_prob:0.8})
if (i % 50 == 0): print("--------------------------------------")
print("Iteration: ", i, round(i/iterations, 2))
print("--------------------------------------") ############################################################## loss_value, accuracy_value, summary = sess.run(
[loss, accuracy, summary_op],
{input_data: batch_data,
labels: batch_labels,
dropout_keep_prob:1.0})
writer_train.add_summary(summary, i) print("loss [train]", loss_value)
print("acc [train]", accuracy_value) ############################################################## loss_value_test, accuracy_value_test, summary_test = sess.run(
[loss, accuracy, summary_op],
{input_data: batch_data_test,
labels: batch_labels_test,
dropout_keep_prob:1.0})writer_test.add_summary(summary_test, i)
print("loss [test]", loss_value_test)
print("acc [test]", accuracy_value_test) ############################################################## timePoint2 = time.time()
print("Time:", round(timePoint2-timePoint1, 2))
timePoint1 = timePoint2 if (i % 10000 == 0 and i != 0):
if not os.path.exists(checkpoints_dir):
os.makedirs(checkpoints_dir)
save_path = all_saver.save(sess, checkpoints_dir +
"/trained_model.ckpt",
global_step=i)
print("Saved model to %s" % save_path)
sess.close()
总之,不同的summary写入不同的writer对象中。
[TensorBoard] Train and Test accuracy simultaneous tracking的更多相关文章
- 论文笔记:Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking
Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking 本文目标在于 ...
- 本人AI知识体系导航 - AI menu
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯 徐亦达老板 Dirichlet Process 学习 ...
- 【colab pytorch】使用tensorboard可视化
import datetime import torch import torch.nn as nn import torch.nn.functional as F import torch.opti ...
- Summary on Visual Tracking: Paper List, Benchmarks and Top Groups
Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is c ...
- Features for Multi-Target Multi-Camera Tracking and Re-identification论文解读
解读一:Features for Multi-Target Multi-Camera Tracking and Re-identification Abstract MTMCT:从多个摄像头采集的视频 ...
- cvpr2015papers
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...
- ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...
- 100天搞定机器学习|day40-42 Tensorflow Keras识别猫狗
100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0. ...
- caffe中的BatchNorm层
在训练一个小的分类网络时,发现加上BatchNorm层之后的检索效果相对于之前,效果会有提升,因此将该网络结构记录在这里,供以后查阅使用: 添加该层之前: layer { name: "co ...
随机推荐
- Windows平台交叉编译Arm Linux平台的QT5.7库
1.准备交叉编译环境 环境说明:Windows 7 64位 此过程需要: (1)Qt库开源代码,我使用的是5.7.0版本: (2)Perl语言环境5.12版本以上: (3)Python语言环境 2.7 ...
- C#获取类名为Internet_Explorer_Server控件的内容
为了让大家都能够使用demo,我以IE为测试对象,另外为了突出重点,所以如何获取窗口句柄我就不做演示了(不清楚的童鞋,可以去Google下哈),句柄值我使用spy++获得 大家可以下载demo(附:s ...
- Android中将十六进制 颜色代码 转换为int类型数值
Android中 将 十六进制 颜色代码 转换为 int 类型数值 方法 : Color.parseColor("#00CCFF") 返回 int 数值 来自为知笔记(Wi ...
- git的使用笔记
1.git下载:https://git-scm.com/downloads 安装git 2.在github.com网站上注册账号 网址:https://github.com/ 3.使用gi ...
- [Python设计模式] 第2章 商场收银软件——策略模式
github地址: https://github.com/cheesezh/python_design_patterns 题目 设计一个控制台程序, 模拟商场收银软件,根据客户购买商品的单价和数量,计 ...
- 不依赖三方库从图像数据中获取宽高-gif、bmp、png、jepg
int extract_pic_info(const BYTE *pic, const uint32_t size, int &width, int &height) { ; widt ...
- JS代码把JSON字符串转换为对象,计算对象的长度并把它转换为数字类型,把转换的值相加减
Number(JSON.parse(rowObject.RenewalProperty).length)-1
- 启动apache (OS 10022)提供了一个无效的參数。解决方式
今天 apache 突然启动不起来了,查看了一下错误日志发现了例如以下错误: [Tue Mar 17 11:27:32 2015] [crit] Parent: child process exite ...
- List stream 对象 属性去重
单值去重不写了,记录对象去重 随手一个对象: @Data @AllArgsConstructor public class Milk { private Integer key; private St ...
- RDLC 图形报表预览时 “本地报表处理期间错误”
在RDLC报表中有图形报表的导出和打印都正常,但预览时"本地报表处理期间错误",这是因为你设置的图形太宽已经超过默认的A4 纸的宽度,解决办法:报表页面的报表--->报表属性 ...