[TensorBoard] Train and Test accuracy simultaneous tracking
训练时的实时状态跟踪的重要性 不言而喻。
[Tensorboard] Cookbook - Tensorboard 讲解调节更新频率

直接上代码展示:
import numpy as np
import tensorflow as tf
from random import randint
import datetime
import os
import time import implementation as imp batch_size = imp.batch_size
iterations = 20001
seq_length = 40 # Maximum length of sentence checkpoints_dir = "./checkpoints" def getTrainBatch():
labels = []
arr = np.zeros([batch_size, seq_length])
for i in range(batch_size):
if (i % 2 == 0):
num = randint(0, 11499)
labels.append([1, 0])
else:
num = randint(12500, 23999)
labels.append([0, 1])
arr[i] = training_data[num]
return arr, labels def getTestBatch():
labels = []
arr = np.zeros([batch_size, seq_length])
for i in range(batch_size):
if (i % 2 == 0):
num = randint(11500, 12499)
labels.append([1, 0])
else:
num = randint(24000, 24999)
labels.append([0, 1])
arr[i] = training_data[num]
return arr, labels ############################################################################### # Call implementation
glove_array, glove_dict = imp.load_glove_embeddings()
training_data = imp.load_data(glove_dict)
input_data, labels, optimizer, accuracy, loss, dropout_keep_prob = imp.define_graph(glove_array) ############################################################################### # tensorboard
train_accuracy_op = tf.summary.scalar("training_accuracy", accuracy)
tf.summary.scalar("loss", loss)
summary_op = tf.summary.merge_all() # saver
all_saver = tf.train.Saver() sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer()) logdir_train = "tensorboard/" + datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S-train") + "/"
writer_train = tf.summary.FileWriter(logdir_train, sess.graph) logdir_test = "tensorboard/" + datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S-test") + "/"
writer_test= tf.summary.FileWriter(logdir_test, sess.graph) timePoint1 = time.time()
timePoint2 = time.time()
for i in range(iterations):
batch_data, batch_labels = getTrainBatch()
batch_data_test, batch_labels_test = getTestBatch() # Set the dropout_keep_prob
# 1.0: dropout is invalid.
# 0.5: dropout is 0.5
sess.run(optimizer, {input_data: batch_data, labels: batch_labels, dropout_keep_prob:0.8})
if (i % 50 == 0): print("--------------------------------------")
print("Iteration: ", i, round(i/iterations, 2))
print("--------------------------------------") ############################################################## loss_value, accuracy_value, summary = sess.run(
[loss, accuracy, summary_op],
{input_data: batch_data,
labels: batch_labels,
dropout_keep_prob:1.0})
writer_train.add_summary(summary, i) print("loss [train]", loss_value)
print("acc [train]", accuracy_value) ############################################################## loss_value_test, accuracy_value_test, summary_test = sess.run(
[loss, accuracy, summary_op],
{input_data: batch_data_test,
labels: batch_labels_test,
dropout_keep_prob:1.0})writer_test.add_summary(summary_test, i)
print("loss [test]", loss_value_test)
print("acc [test]", accuracy_value_test) ############################################################## timePoint2 = time.time()
print("Time:", round(timePoint2-timePoint1, 2))
timePoint1 = timePoint2 if (i % 10000 == 0 and i != 0):
if not os.path.exists(checkpoints_dir):
os.makedirs(checkpoints_dir)
save_path = all_saver.save(sess, checkpoints_dir +
"/trained_model.ckpt",
global_step=i)
print("Saved model to %s" % save_path)
sess.close()
总之,不同的summary写入不同的writer对象中。
[TensorBoard] Train and Test accuracy simultaneous tracking的更多相关文章
- 论文笔记:Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking
Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking 本文目标在于 ...
- 本人AI知识体系导航 - AI menu
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯 徐亦达老板 Dirichlet Process 学习 ...
- 【colab pytorch】使用tensorboard可视化
import datetime import torch import torch.nn as nn import torch.nn.functional as F import torch.opti ...
- Summary on Visual Tracking: Paper List, Benchmarks and Top Groups
Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is c ...
- Features for Multi-Target Multi-Camera Tracking and Re-identification论文解读
解读一:Features for Multi-Target Multi-Camera Tracking and Re-identification Abstract MTMCT:从多个摄像头采集的视频 ...
- cvpr2015papers
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...
- ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...
- 100天搞定机器学习|day40-42 Tensorflow Keras识别猫狗
100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0. ...
- caffe中的BatchNorm层
在训练一个小的分类网络时,发现加上BatchNorm层之后的检索效果相对于之前,效果会有提升,因此将该网络结构记录在这里,供以后查阅使用: 添加该层之前: layer { name: "co ...
随机推荐
- SVN clean失败解决方法【转】
原文地址:http://blog.csdn.net/victory08/article/details/42100325/ svn执行clean up后出现提示:svn cleanup failed– ...
- 读书笔记《疯狂人类进化史》,第五章,关于xing ai这件事
像人类这样沉迷于交配的却少之又少--传宗接代并不需要无休止的xing ai,这种小事只要在发情期做几次就可以了.在其他动物眼里,人类简直"淫荡至极",他们在床上花费大量时间 ...
- Android学习笔记(11):线性布局LinearLayout
线性布局LinearLayout是指在横向或是竖向一个接一个地排列.当排列的组件超出屏幕后,超出的组件将不会再显示出来. LinearLayout支持的XML属性和相应方法如表所看到的: Attrib ...
- Google Maps瓦片(tile)地图文件下载(1-11层级)
整理硬盘时,发现一份去年下载的谷歌地图瓦片文件,整理并分享给大家. 地图来源:Google Maps(应该是国内谷歌地图) 采集时间:2017年6月 采集范围:0-6层级世界范围:7-11层级中国范围 ...
- Retrofit 2.0 使用详细教程
文章来自:https://blog.csdn.net/carson_ho/article/details/73732076 前言 在Andrroid开发中,网络请求十分常用 而在Android网络请求 ...
- C# 怎么让winform程序中的输入文本框保留上次的输入
选中TextBox控件,在属性窗格中找到(ApplicationSettings),然后设置它. 绑定配置文件 private Settings settings = new Settings(); ...
- JAVA 自定义注解在自动化测试中的使用
在UI自动化测试中,相信很多人都喜欢用所谓的PO模式,其中的P,也就是page的意思,于是乎,在脚本里,或者在其它的page里,会要new很多的page对象,这样很麻烦,前面我们也讲到了注解的使用,很 ...
- 单片机成长之路(51基础篇) - 017 C51中data,idata,xdata,pdata的区别(转)
从数据存储类型来说,8051系列有片内.片外程序存储器,片内.片外数据存储器,片内程序存储器还分直接寻址区和间接寻址类型,分别对应code.data.xdata.idata以及根据51系列特点而设定的 ...
- JavaScript中的namespace
<head> <title> New Document </title> <script> var global = window.global||{} ...
- xcode9 报错 “Swift Language Version” (SWIFT_VERSION) build setting must be set to a supported value for targets which use Swift
用xcode编译后会出现这个错误的情况: 1.使用cocopod导入第三方swift包后,swift的包是比较老的swift开发的. 2.用xcode9 打开老的swift(比如swift2.0)的工 ...