训练时的实时状态跟踪的重要性 不言而喻。

[Tensorboard] Cookbook - Tensorboard  讲解调节更新频率

直接上代码展示:

import numpy as np
import tensorflow as tf
from random import randint
import datetime
import os
import time import implementation as imp batch_size = imp.batch_size
iterations = 20001
seq_length = 40 # Maximum length of sentence checkpoints_dir = "./checkpoints" def getTrainBatch():
labels = []
arr = np.zeros([batch_size, seq_length])
for i in range(batch_size):
if (i % 2 == 0):
num = randint(0, 11499)
labels.append([1, 0])
else:
num = randint(12500, 23999)
labels.append([0, 1])
arr[i] = training_data[num]
return arr, labels def getTestBatch():
labels = []
arr = np.zeros([batch_size, seq_length])
for i in range(batch_size):
if (i % 2 == 0):
num = randint(11500, 12499)
labels.append([1, 0])
else:
num = randint(24000, 24999)
labels.append([0, 1])
arr[i] = training_data[num]
return arr, labels ############################################################################### # Call implementation
glove_array, glove_dict = imp.load_glove_embeddings()
training_data = imp.load_data(glove_dict)
input_data, labels, optimizer, accuracy, loss, dropout_keep_prob = imp.define_graph(glove_array) ############################################################################### # tensorboard
train_accuracy_op = tf.summary.scalar("training_accuracy", accuracy)
tf.summary.scalar("loss", loss)
summary_op = tf.summary.merge_all() # saver
all_saver = tf.train.Saver() sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer()) logdir_train = "tensorboard/" + datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S-train") + "/"
writer_tr
ain = tf.summary.FileWriter(logdir_train, sess.graph) logdir_test = "tensorboard/" + datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S-test") + "/"
writer_test
= tf.summary.FileWriter(logdir_test, sess.graph) timePoint1 = time.time()
timePoint2 = time.time()
for i in range(iterations):
batch_data, batch_labels = getTrainBatch()
batch_data_test, batch_labels_test = getTestBatch() # Set the dropout_keep_prob
# 1.0: dropout is invalid.
# 0.5: dropout is 0.5
sess.run(optimizer, {input_data: batch_data, labels: batch_labels, dropout_keep_prob:0.8})
if (i % 50 == 0): print("--------------------------------------")
print("Iteration: ", i, round(i/iterations, 2))
print("--------------------------------------") ############################################################## loss_value, accuracy_value, summary = sess.run(
                        [loss, accuracy, summary_op],
                        {input_data: batch_data,
                        labels: batch_labels,
                        dropout_keep_prob:1.0})
writer_train.add_summary(summary, i) print("loss [train]", loss_value)
print("acc [train]", accuracy_value) ############################################################## loss_value_test, accuracy_value_test, summary_test = sess.run(
                        [loss, accuracy, summary_op],
                        {input_data: batch_data_test,
                        labels: batch_labels_test,
                        dropout_keep_prob:1.0})writer_test.add_summary(summary_test, i)
print("loss [test]", loss_value_test)
print("acc [test]", accuracy_value_test) ############################################################## timePoint2 = time.time()
print("Time:", round(timePoint2-timePoint1, 2))
timePoint1 = timePoint2 if (i % 10000 == 0 and i != 0):
if not os.path.exists(checkpoints_dir):
os.makedirs(checkpoints_dir)
save_path = all_saver.save(sess, checkpoints_dir +
"/trained_model.ckpt",
global_step=i)
print("Saved model to %s" % save_path)
sess.close()

总之,不同的summary写入不同的writer对象中。

[TensorBoard] Train and Test accuracy simultaneous tracking的更多相关文章

  1. 论文笔记:Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking

    Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking  本文目标在于 ...

  2. 本人AI知识体系导航 - AI menu

    Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习 ...

  3. 【colab pytorch】使用tensorboard可视化

    import datetime import torch import torch.nn as nn import torch.nn.functional as F import torch.opti ...

  4. Summary on Visual Tracking: Paper List, Benchmarks and Top Groups

    Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is c ...

  5. Features for Multi-Target Multi-Camera Tracking and Re-identification论文解读

    解读一:Features for Multi-Target Multi-Camera Tracking and Re-identification Abstract MTMCT:从多个摄像头采集的视频 ...

  6. cvpr2015papers

    @http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...

  7. ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)

    IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...

  8. 100天搞定机器学习|day40-42 Tensorflow Keras识别猫狗

    100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0. ...

  9. caffe中的BatchNorm层

    在训练一个小的分类网络时,发现加上BatchNorm层之后的检索效果相对于之前,效果会有提升,因此将该网络结构记录在这里,供以后查阅使用: 添加该层之前: layer { name: "co ...

随机推荐

  1. javaweb中为mysql的curd多个值的语句

    更新语句 String sql = "update student set num=?,name=?,birthday=?,score=?,password=? where id=?&quo ...

  2. Log4j2 + Maven的配置文件示例详解

    一.配置Maven:pom.xml <properties> <project.build.sourceEncoding>UTF-8</project.build.sou ...

  3. asp.net 用JWT来实现token以此取代Session

    先说一下为什么要写这一篇博客吧,其实个人有关asp.net 会话管理的了解也就一般,这里写出来主要是请大家帮我分析分析这个思路是否正确.我以前有些有关Session的也整理如下: 你的项目真的需要Se ...

  4. Facebook在代码里下毒,百度身受重伤。。。

    白首相知犹按剑     前两天看到有朋友分享说,WordPress停用了react.今天,在逛知乎时看到了另一个问题别细看这图,我赌你看不懂... 嗯...用人话来说就是百度内部要求他们的程序猿不要再 ...

  5. [Python设计模式] 第10章 怎么出试卷?——模版方法模式

    github地址:https://github.com/cheesezh/python_design_patterns 题目 小时候数学老师的随堂测验,都是老师在黑板上写题目,学生在下边抄,然后再做题 ...

  6. 3728 联合权值[NOIP 2014 Day1 T2]

    来源:NOIP2014 Day1 T2 OJ链接: http://codevs.cn/problem/3728/ https://www.luogu.org/problemnew/show/P1351 ...

  7. Ubuntu18.04命令行连接WiFi

    查看是否已经正确安装无线网卡 iwconfig .启动无线网卡, 如果网卡是wlan0 # 方式1 ifconfig wlan0 up # 或者方式2 ip link set wlan0 up .扫描 ...

  8. 用Docker启动php-5.6 fpm服务配合宿主机nginx运行php测试环境

    因为Ubuntu18.04默认的openssl版本就是1.1.0, 而PHP5.6无法在openssl 1.1下编译 "PHP 5.6 is receiving only security ...

  9. ios实例开发精品源码文章推荐(8.28)

    iOS源码:游戏引擎-推箱子游戏 <ignore_js_op> http://www.apkbus.com/android-106392-1-11.html iOS源码:进度条-Color ...

  10. Mysql 用户和权限管理

    用户和权限管理: 语法 grant 权限 on 数据库.数据表 to '用户' @ '主机名'; 例:给 xiaogang 分配所有的权限 grant all on *.* to 'xiaogang' ...