训练时的实时状态跟踪的重要性 不言而喻。

[Tensorboard] Cookbook - Tensorboard  讲解调节更新频率

直接上代码展示:

import numpy as np
import tensorflow as tf
from random import randint
import datetime
import os
import time import implementation as imp batch_size = imp.batch_size
iterations = 20001
seq_length = 40 # Maximum length of sentence checkpoints_dir = "./checkpoints" def getTrainBatch():
labels = []
arr = np.zeros([batch_size, seq_length])
for i in range(batch_size):
if (i % 2 == 0):
num = randint(0, 11499)
labels.append([1, 0])
else:
num = randint(12500, 23999)
labels.append([0, 1])
arr[i] = training_data[num]
return arr, labels def getTestBatch():
labels = []
arr = np.zeros([batch_size, seq_length])
for i in range(batch_size):
if (i % 2 == 0):
num = randint(11500, 12499)
labels.append([1, 0])
else:
num = randint(24000, 24999)
labels.append([0, 1])
arr[i] = training_data[num]
return arr, labels ############################################################################### # Call implementation
glove_array, glove_dict = imp.load_glove_embeddings()
training_data = imp.load_data(glove_dict)
input_data, labels, optimizer, accuracy, loss, dropout_keep_prob = imp.define_graph(glove_array) ############################################################################### # tensorboard
train_accuracy_op = tf.summary.scalar("training_accuracy", accuracy)
tf.summary.scalar("loss", loss)
summary_op = tf.summary.merge_all() # saver
all_saver = tf.train.Saver() sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer()) logdir_train = "tensorboard/" + datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S-train") + "/"
writer_tr
ain = tf.summary.FileWriter(logdir_train, sess.graph) logdir_test = "tensorboard/" + datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S-test") + "/"
writer_test
= tf.summary.FileWriter(logdir_test, sess.graph) timePoint1 = time.time()
timePoint2 = time.time()
for i in range(iterations):
batch_data, batch_labels = getTrainBatch()
batch_data_test, batch_labels_test = getTestBatch() # Set the dropout_keep_prob
# 1.0: dropout is invalid.
# 0.5: dropout is 0.5
sess.run(optimizer, {input_data: batch_data, labels: batch_labels, dropout_keep_prob:0.8})
if (i % 50 == 0): print("--------------------------------------")
print("Iteration: ", i, round(i/iterations, 2))
print("--------------------------------------") ############################################################## loss_value, accuracy_value, summary = sess.run(
                        [loss, accuracy, summary_op],
                        {input_data: batch_data,
                        labels: batch_labels,
                        dropout_keep_prob:1.0})
writer_train.add_summary(summary, i) print("loss [train]", loss_value)
print("acc [train]", accuracy_value) ############################################################## loss_value_test, accuracy_value_test, summary_test = sess.run(
                        [loss, accuracy, summary_op],
                        {input_data: batch_data_test,
                        labels: batch_labels_test,
                        dropout_keep_prob:1.0})writer_test.add_summary(summary_test, i)
print("loss [test]", loss_value_test)
print("acc [test]", accuracy_value_test) ############################################################## timePoint2 = time.time()
print("Time:", round(timePoint2-timePoint1, 2))
timePoint1 = timePoint2 if (i % 10000 == 0 and i != 0):
if not os.path.exists(checkpoints_dir):
os.makedirs(checkpoints_dir)
save_path = all_saver.save(sess, checkpoints_dir +
"/trained_model.ckpt",
global_step=i)
print("Saved model to %s" % save_path)
sess.close()

总之,不同的summary写入不同的writer对象中。

[TensorBoard] Train and Test accuracy simultaneous tracking的更多相关文章

  1. 论文笔记:Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking

    Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking  本文目标在于 ...

  2. 本人AI知识体系导航 - AI menu

    Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习 ...

  3. 【colab pytorch】使用tensorboard可视化

    import datetime import torch import torch.nn as nn import torch.nn.functional as F import torch.opti ...

  4. Summary on Visual Tracking: Paper List, Benchmarks and Top Groups

    Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is c ...

  5. Features for Multi-Target Multi-Camera Tracking and Re-identification论文解读

    解读一:Features for Multi-Target Multi-Camera Tracking and Re-identification Abstract MTMCT:从多个摄像头采集的视频 ...

  6. cvpr2015papers

    @http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...

  7. ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)

    IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...

  8. 100天搞定机器学习|day40-42 Tensorflow Keras识别猫狗

    100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0. ...

  9. caffe中的BatchNorm层

    在训练一个小的分类网络时,发现加上BatchNorm层之后的检索效果相对于之前,效果会有提升,因此将该网络结构记录在这里,供以后查阅使用: 添加该层之前: layer { name: "co ...

随机推荐

  1. Codeforces Round #404 (Div. 2) D. Anton and School - 2 数学

    D. Anton and School - 2 题目连接: http://codeforces.com/contest/785/problem/D Description As you probabl ...

  2. 解决IE9下交通银行网上银行无法输入密码的问题

    自系统升级到 Win 7以后,突然发现用 IE9 浏览器登陆交通银行网上银行时,始终不能正常 输入密码.原来,非要进行特别的设置才可.现记录如下: 1.没有交通银行安装安全输入控件,安装即可.   当 ...

  3. mui 总结

    出框框 js内容 mui(".mui-popover").popover('toggle');         点击“弹出框框”就会弹出这个有class="mui-pop ...

  4. App架构师实践指南三之基础组件

    App架构师实践指南三之基础组件 1.基础组件库随着时间的增长,代码量的逐渐积累,新旧项目之间有太多可以服用的代码.下面是整理的公共代码库. 2.关于加密密钥的保护以及网络传输安全是移动应用安全最关键 ...

  5. MySQL到底能支持多大的数据量?

    MySQL是中小型网站普遍使用的数据库之一,然而,很多人并不清楚MySQL到底能支持多大的数据量,再加上某些国内CMS厂商把数据承载量的责任推给它,导致很多不了解MySQL的站长对它产生了很多误解,那 ...

  6. sql server 2008 express 安装的时提示“重启计算机失败"

    sql server 2008 express 安装的时提示"重启计算机失败" 解决办法: 打开注册表编辑器(regedit.exe),在HKEY_LOCAL_MACHINE\SY ...

  7. Java定时任务示例

    package com.my.timer; import java.util.Date; import java.util.TimerTask; public class myTask extends ...

  8. python ddt 传多个参数值示例

    import unittest from ddt import ddt,data,file_data,unpack @ddt class TestDDT(unittest.TestCase): lis ...

  9. IP子系统集成

    IP子系统集成 1.Creating External Connections 由此可以看出:block design的设计是可以连接电路板上的CPU的(外挂CPU). 2.生成外部接口 端口生成之后 ...

  10. Eclipse和MyEclipse工程描述符.classpath和.project和.mymetadata详解(转)

    转自:http://blog.csdn.net/zygsee/archive/2009/12/22/5046100.aspx 有时候在一个Java工程里我们需要加入第三方jar包,这时你加入的最好相对 ...