ZOJ-3537
题目大意:给你一个n (n<=300) 边形,给出它所有的顶点坐标,让你把它划分成n-2个三角形的花费最小值,顶点 a 和 b 相连的花费为
abs(a.x+b.x)*abs(a.y+b.y)。 如果是凹多边形输出无解。
思路:先跑个凸包判断是不是凸多边形,跑完之后点的顺序是逆时针的,我们考虑区间dp,dp[ i ][ j ]表示,从顶点 i 沿多边形的边逆时针跑到
顶点 j 所形成的折线和 直线i->j,所围成的多边形分割成小三角形所需要的花费。
状态转移方程: dp[ i ][ j ]=min(dp[ i ][ j ] , dp[ i ][ k ]+dp[ k ][ j ]+cost[ i ][ k ]+cost[ k ][ j ]); 如果j-i<=2 显然花费为0,所以答案微dp[ 0 ][ n-1]。
#include<bits/stdc++.h>
using namespace std;
const int N=;
const int inf=0x3f3f3f3f;
int n,tot,dp[N][N],cost[N][N],mod;
struct point
{
int x,y;
point(int _x=,int _y=){x=_x; y=_y;}
point operator -(const point &rhs)const
{
return point(x-rhs.x,y-rhs.y);
}
}p[N],cp[N];
typedef point vec;
int cross(const vec &a,const vec &b)
{
return (a.x*b.y)-(a.y*b.x);
}
int dis(point a,point b)
{
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
bool cmp(const point &a,const point &b)
{
int z=cross(a-p[],b-p[]);
if(z>||(z== && dis(p[],a)<dis(p[],b)))
return ;
else return ;
}
void get_cp()
{
int k=; tot=;
for(int i=;i<n;i++)
if(p[i].y<p[k].y || p[i].y==p[k].y && p[i].x<p[k].x) k=i;
swap(p[],p[k]);
sort(p+,p+n,cmp);
tot=,cp[]=p[];cp[]=p[];
for(int i=;i<n;i++)
{
while(tot> && cross(cp[tot-]-cp[tot-],p[i]-cp[tot-])>) tot--;
cp[tot++]=p[i];
}
}
void init()
{
memset(dp,-,sizeof(dp));
memset(cost,,sizeof(cost));
}
int solve(int l,int r)
{
if(dp[l][r]!=-) return dp[l][r];
if(r-l<=) return ;
dp[l][r]=inf;
for(int k=l+;k<=r-;k++)
dp[l][r]=min(solve(l,k)+solve(k,r)+cost[l][k]+cost[k][r],dp[l][r]);
return dp[l][r];
}
int main()
{
while(scanf("%d%d",&n,&mod)!=EOF)
{
for(int i=;i<n;i++) scanf("%d%d",&p[i].x,&p[i].y);
get_cp();
if(tot<n)
{
puts("I can't cut.");
continue;
}
init();
for(int i=;i<n;i++)
for(int j=i+;j<n;j++)
cost[i][j]=cost[j][i]=abs(cp[i].x+cp[j].x)*abs(cp[i].y+cp[j].y)%mod; printf("%d\n",solve(,n-));
} return ;
}
ZOJ-3537的更多相关文章
- zoj 3537 Cake 区间DP (好题)
题意:切一个凸边行,如果不是凸包直接输出.然后输出最小代价的切割费用,把凸包都切割成三角形. 先判断是否是凸包,然后用三角形优化. dp[i][j]=min(dp[i][j],dp[i][k]+dp[ ...
- ZOJ 3537 Cake(凸包+区间DP)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形 ...
- zoj 3537 Cake(区间dp)
这道题目是经典的凸包的最优三角剖分,不过这个题目给的可能不是凸包,所以要提前判定一下是否为凸包,如果是凸包的话才能继续剖分,dp[i][j]表示已经排好序的凸包上的点i->j上被分割成一个个小三 ...
- zoj 3537 Cake (凸包确定+间隔dp)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-sha ...
- ZOJ 3537 Cake
区间DP. 首先求凸包判断是否为凸多边形. 如果是凸多边形:假设现在要切割连续的一段点,最外面两个一定是要切一刀的,内部怎么切达到最优解就是求子区间最优解,因此可以区间DP. #include< ...
- 区间DP Zoj 3537 Cake 区间DP 最优三角形剖分
下面是别人的解题报告的链接,讲解很详细,要注意细节的处理...以及为什么可以这样做 http://blog.csdn.net/woshi250hua/article/details/7824433 我 ...
- zoj 3537 区间dp+计算几何
题意:给定n个点的坐标,先问这些点是否能组成一个凸包,如果是凸包,问用不相交的线来切这个凸包使得凸包只由三角形组成,根据costi, j = |xi + xj| * |yi + yj| % p算切线的 ...
- ZOJ 3537 Cake(凸包判定+区间DP)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped c ...
- ZOJ 3537 Cake 求凸包 区间DP
题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...
- ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)
Description You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut t ...
随机推荐
- Selenium自动化Page模式(Python)
Selenium是当前主流的web自动化工具,提供了多种浏览器的支持(Chrome,Firefox, IE等等),当然大家也可以用自己喜欢的语言(Java,C#,Python等)来写用例,很容易上手. ...
- UE4的AI学习(2)——官方案例实例分析
官方给出的AI实例是实现一个跟随着玩家跑的AI,当玩家没有在AI视野里时,它会继续跑到最后看到玩家的地点,等待几秒后如果仍然看不到玩家,则跑回初始地点.官方的案例已经讲得比较详细,对于一些具体的函数调 ...
- 【Python】多线程-线程池使用
1.学习目标 线程池使用 2.编程思路 2.1 代码原理 线程池是预先创建线程的一种技术.线程池在还没有任务到来之前,创建一定数量的线程,放入空闲队列中.这些线程都是处于睡眠状态,即均为启动,不消耗 ...
- python3数字、日期和时间
1.对数值进行取整 #使用内建的round(value,ndigits)函数来取整,ndigits指定保留的位数,在取整时会取值在偶数上,如1.25取一位会取整1.2,1.26会取整1.3 In [1 ...
- Django 利用管理器实现文章归档
Django管理器:class Manager 管理器是Django的模型进行数据库查询的接口,Django应用的每个模型都拥有至少一个管理器.默认情况下,Django为每个模型类添加一个名为obje ...
- 通过全备+主从同步恢复被drop的库或表
MySQL 中drop 等高危误操作后恢复方法 实验目的: 本次实验以恢复drop操作为例,使用不同方法进行误操作的数据恢复. 方法: 利用master同步(本文)] 伪master+Binlog+同 ...
- openstack新版本ocata的接口改动
新增placement API,部分替代了原先的nova api的部分功能接口 可在此页面查看API详情及示例:https://specs.openstack.org/openstack/nova-s ...
- 从零开始自己搭建复杂网络2(以Tensorflow为例)
从零开始自己搭建复杂网络(以DenseNet为例) DenseNet 是一种具有密集连接的卷积神经网络.在该网络中,任何两层之间都有直接的连接,也就是说,网络每一层的输入都是前面所有层输出的并集, 而 ...
- Java基础98 gson插件的使用
1.要用到的包 2.实例 实体类 people package com.shore.entity; /** * @author DSHORE/2019-4-21 * */ public class P ...
- OCM_第四天课程:Section2 —》GC 的安装和配置
注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...