二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;它的左、右子树也分别为二叉搜索树。(摘自百度百科)

给定一系列互不相等的整数,将它们顺次插入一棵初始为空的二叉搜索树,然后对结果树的结构进行描述。你需要能判断给定的描述是否正确。例如将{ 2 4 1 3 0 }插入后,得到一棵二叉搜索树,则陈述句如“2是树的根”、“1和4是兄弟结点”、“3和0在同一层上”(指自顶向下的深度相同)、“2是4的双亲结点”、“3是4的左孩子”都是正确的;而“4是2的左孩子”、“1和3是兄弟结点”都是不正确的。

输入格式:

输入在第一行给出一个正整数N(≤),随后一行给出N个互不相同的整数,数字间以空格分隔,要求将之顺次插入一棵初始为空的二叉搜索树。之后给出一个正整数M(≤),随后M行,每行给出一句待判断的陈述句。陈述句有以下6种:

  • A is the root,即"A是树的根";
  • A and B are siblings,即"AB是兄弟结点";
  • A is the parent of B,即"AB的双亲结点";
  • A is the left child of B,即"AB的左孩子";
  • A is the right child of B,即"AB的右孩子";
  • A and B are on the same level,即"AB在同一层上"。

题目保证所有给定的整数都在整型范围内。

输出格式:

对每句陈述,如果正确则输出Yes,否则输出No,每句占一行。

输入样例:

5
2 4 1 3 0
8
2 is the root
1 and 4 are siblings
3 and 0 are on the same level
2 is the parent of 4
3 is the left child of 4
1 is the right child of 2
4 and 0 are on the same level
100 is the right child of 3

输出样例:

Yes
Yes
Yes
Yes
Yes
No
No
No
模拟搜索二叉树即可
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);i--)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define LL long long
#define pb push_back
#define fi first
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
///////////////////////////////////
#define inf 0x3f3f3f3f
#define N 10000
map<int,int>mp;
int a[N];
int n;
void build(void )
{
CLR(a,-);
rep(i,,n)
{
int x;
RI(x);
int id=;
while()
{
if(a[id]==-)
{
a[id]=x;
mp[x]=id;
break;
}
else if(x>a[id])
{
id=id*+;
}
else id*=;
}
}
}
int deep(int x)
{
int d=;
int L=,R=;
if(x==)return ;
while()
{
if(x>=L&&x<=R)
return d; L*=;
R=L*-;
d++;
}
} int main()
{
RI(n);
build();
int q;
RI(q);
string str;
while(q--)
{
int a;
RI(a);
cin>>str;
if(str=="is")
{
cin>>str;
cin>>str;
if(str=="root")
{
if(mp[a]==)
puts("Yes");
else puts("No"); }
else if(str=="parent")
{
cin>>str;
int b;RI(b);
if(mp[b]/==mp[a])
puts("Yes");
else puts("No");
}
else if(str=="left")
{
cin>>str;cin>>str;
int b;RI(b);
if(mp[b]*==mp[a])
puts("Yes");
else puts("No");
}
else if(str=="right")
{
cin>>str;
cin>>str;
int b;RI(b);
if(mp[b]*+==mp[a])
puts("Yes");
else puts("No");
}
}
else if(str=="and")
{
int b;RI(b);
cin>>str;
cin>>str;
if(str=="siblings")
{
if( abs(mp[b]-mp[a])== )
puts("Yes");
else puts("No");
}
else if(str=="on")
{
cin>>str>>str>>str;
if(mp[a]==||mp[b]==)//数据有一些问题 会出现提问的数字不在树里
puts("No");
else if(deep(mp[a])==deep(mp[b]))
puts("Yes");
else puts("No");
}
}
} return ;
}

L3-016 二叉搜索树的结构 (30 分) 二叉树的更多相关文章

  1. 天梯赛练习 L3-016 二叉搜索树的结构 (30分)

    题目分析: 用数型结构先建树,一边输入一边建立,根节点的下标为1,所以左孩子为root*2,右孩子为root*2+1,输入的时候可用cin输入字符串也可用scanf不会超时,判断是否在同一层可以判断两 ...

  2. PTA 7-2 二叉搜索树的结构(30 分)

    7-2 二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大 ...

  3. 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历

    二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历   二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则 ...

  4. 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历

    二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根 ...

  5. 【开200数组解决二叉搜索树的建立、遍历】PAT-L3-016. 二叉搜索树的结构——不用链表来搞定二叉搜索树

    L3-016. 二叉搜索树的结构 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它 ...

  6. L3-1 二叉搜索树的结构 (30 分)

    讲解的很不错的链接:https://blog.csdn.net/chudongfang2015/article/details/79446477#commentBox 题目链接:https://pin ...

  7. L3-016 二叉搜索树的结构 (30 分)

    二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别 ...

  8. PAT L3-016 二叉搜索树的结构

    https://pintia.cn/problem-sets/994805046380707840/problems/994805047903240192 二叉搜索树或者是一棵空树,或者是具有下列性质 ...

  9. L3-016. 二叉搜索树的结构

    二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别 ...

随机推荐

  1. 列表视图QlistView

    列表视图QlistView要配合setModel模型一起使用 例子一 QStringListModel()  字符串列表模型 import sys from PyQt5.QtWidgets impor ...

  2. luogu P1979 [NOIP2013] 华容道

    传送门 这道题中,棋子的移动是要移动到空格上去,所以空格要在棋子旁边才能移动棋子;而棋子移动的方向由空格决定 所以我们可以记三维状态\(di_{i,j,k}\),表示状态为棋子在\((i,j)\),空 ...

  3. python标准库 - 数学库和随机数库

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们已经在Python运算中看到Python最基本的数学运算功能.此外,math包 ...

  4. Windows Server 2008 R2 服务器系统安装图文教程

    https://www.jb51.net/os/535658.html http://www.machenike.com/article.php?id=207

  5. Delphi中的动态包,有详细建立包的步骤(答案很简单:因为包的功能强大)

    为什么要使用包? 答案很简单:因为包的功能强大.设计期包(design-time package)简化了自定义组件的发布和安装:而运行期包(run-time package)则更是给传统的程序设计注入 ...

  6. springboot系列一、springboot产生背景及介绍

    一.为什么用Springboot 长期以来 Java 的开发一直让人所诟病: ·Java 项目开发复杂度极其高: · Java 项目的维护非常困难: · 在云时代如何实现项目的快速部署以及快速启动: ...

  7. VS "以下文件中的行尾不一致,要将行尾标准化吗?"

    原文地址:http://www.cnblogs.com/yymn/p/6852857.html 这是由Windows和Unix不同的标准引起的...即“回车”和“换行”的问题... “回车”和“换行” ...

  8. Java SSH远程执行Shell命令、shell脚本实现(Ganymed SSH)

    jar包下载地址: http://www.ganymed.ethz.ch/ssh2/ 此源码的好处就是没有依赖很多其他的包,拷贝过来干干净净.具体代码实现可以看下文,或参考官方文档,在下载的压缩包里g ...

  9. jenkins findbugs流编码问题:DM_DEFAULT_ENCODING

    报错信息: MessageParserUtil.java:122, DM_DEFAULT_ENCODING, Priority: High Dm: Found reliance on default ...

  10. 作业8_exer1128.txt

    1.规范化理论是关系数据库进行逻辑设计的理论依据,根据这个理论,关系数据库中的关系必须满足:每 一个属性都是(B). A.长度不变的 B.不可分解的 C.互相关联的 D.互不相关的 2.已知关系模式R ...