hdu 4481 Time travel(高斯求期望)(转)
(转)http://blog.csdn.net/u013081425/article/details/39240021
http://acm.hdu.edu.cn/showproblem.php?pid=4418
读了一遍题后大体明白意思,但有些细节不太确定。就是当它处在i点处,它有1~m步可以走,但他走的方向不确定呢。后来想想这个方向是确定的,就是他走到i点的方向,它会继续朝着这个方向走,直到转向回头。
首先要解决的一个问题是处在i点处,它下一步该到哪个点。为了解决方向不确定的问题,将n个点转化为2*(n-1)个点。例如当n=4时由原来的0123变为012321,它对应的编号为012345,这样就不用管它哪个方向,统一处理了,当向前走k步时即(i+k)%n。
然后设出dp[i]表示在i点处时到达终点的期望步数,那么可列出转移方程dp[i] = ∑( pk * (dp[ (x+k)%n ] +k) )。但是有些点是永远无法到达的,因此先bfs出所有到达的点,然后列出方程组解方程。
有许多注意的点,判断p[i]是否为0等。
#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <list>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
//#define LL __int64
#define LL long long
#define eps 1e-9
#define PI acos(-1.0)
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = ; double p[maxn];
double a[maxn][maxn];//增广矩阵
double X[maxn];//解集
int num[maxn];//给每个能给到达的point离散化
int n,m,x,y,d;
int equ,var,cnt; bool Gauss()
{
int row,col,max_r,i,j;
row = ;
col = ;
while(row < equ && col < var)
{
max_r = row;
for(i = row+; i < equ; i++)
{
if(fabs(a[i][col]) > fabs(a[max_r][col]))
max_r = i;
}
if(max_r != row)
{
for(j = col; j <= var; j++)
swap(a[row][j], a[max_r][j]);
}
if(fabs(a[row][col]) < eps)
{
col++;
continue;
}
for(i = row+; i < equ; i++)
{
if(fabs(a[i][col]) < eps) continue;
double t = a[i][col]/a[row][col];
a[i][col] = 0.0;
for(j = col+; j <= var; j++)
a[i][j] -= a[row][j]*t;
}
row++;
col++;
} for(i = row; i < equ; i++)
if(fabs(a[i][var]) > eps)
return false; //无解
for(i = equ-; i >= ; i--)
{
if(fabs(a[i][i]) < eps) continue;
double t = a[i][var];
for(j = i+; j < var; j++)
t -= a[i][j]*X[j];
X[i] = t/a[i][i];
}
return true;
} void bfs(int s) //bfs找出所有能够到达的点并离散化
{
queue <int> que;
que.push(s);
num[s] = cnt++;
while(!que.empty())
{
int u = que.front();
que.pop();
for(int i = ; i <= m; i++)
{
if(fabs(p[i]) < eps)
continue;
int v = (u+i)%n;
if(num[v] == -)
{
num[v] = cnt++;
que.push(v);
}
}
}
} int main()
{
int test;
scanf("%d",&test);
for(int item = ; item <= test; item++)
{
scanf("%d %d %d %d %d",&n,&m,&y,&x,&d);
for(int i = ; i <= m; i++)
{
scanf("%lf",&p[i]);
p[i] /= ;
}
if(x == y)
{
printf("0.00\n");
continue;
}
n = *(n-);
if(d == )
x = n-x;
memset(num,-,sizeof(num));
cnt = ;
bfs(x);
if(num[y] == - && num[n-y] == -) //注意这里是 &&,只有当两个方向都走不到才算走不到
{
printf("Impossible !\n");
continue;
} memset(a,,sizeof(a));
memset(X,,sizeof(X));
equ = var = cnt; for(int i = ; i < n; i++)
{
if(num[i] != -)
{
if(i == y || i == n-y) //注意特判终点
{
a[num[i]][num[i]] = ;
a[num[i]][cnt] = ;
continue;
}
a[num[i]][num[i]] = ;
for(int j = ; j <= m; j++)
{
int t = (i+j)%n;
if(num[t] != -)
a[num[i]][num[t]] -= p[j];
a[num[i]][cnt] += j*p[j];
}
}
}
if(Gauss())
printf("%.2lf\n",X[num[x]]);
else printf("Impossible !\n");
}
return ;
}
hdu 4481 Time travel(高斯求期望)(转)的更多相关文章
- [ACM] hdu 4418 Time travel (高斯消元求期望)
Time travel Problem Description Agent K is one of the greatest agents in a secret organization calle ...
- HDU 5245 Joyful(概率题求期望)
D - Joyful Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit S ...
- ZJUT 地下迷宫 (高斯求期望)
ShowID=1423">http://cpp.zjut.edu.cn/ShowProblem.aspx?ShowID=1423 设dp[i]表示在i点时到达终点要走的期望步数,那么d ...
- HDU 3853 LOOP (概率DP求期望)
D - LOOPS Time Limit:5000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit St ...
- HDU 4418 Time travel 期望dp+dfs+高斯消元
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4418 Time travel Time Limit: 2000/1000 MS (Java/Othe ...
- hdu 4870 rating(高斯消元求期望)
Rating Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Sub ...
- HDU4870_Rating_双号从零单排_高斯消元求期望
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4870 原题: Rating Time Limit: 10000/5000 MS (Java/Other ...
- HDU 5159 Card (概率求期望)
B - Card Time Limit:5000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Sta ...
- hdu 4418 Time travel 概率DP
高斯消元求期望!! 将n时间点构成2*(n-1)的环,每一点的期望值为dp[i]=dp[i+1]*p1+dp[i+2]*p2+……+dp[i+m]*pm+1. 这样就可以多个方程,利用高斯消元求解. ...
随机推荐
- 内网劫持渗透新姿势:MITMf简要指南
声明:本文具有一定攻击性,仅作为技术交流和安全教学之用,不要用在除了搭建环境之外的环境. 0×01 题记 又是一年十月一,想到小伙伴们都纷纷出门旅游,皆有美酒佳人相伴,想到这里,不禁潸然泪下.子曰:& ...
- atom无法安装插件的解决方法之一
atom通过setting中无法下载插件,通过apm也无法下载插件,可能是网络.config配置的问题,不好解决. 下面的方法全手动,基本属于万金油方法: 1,在atom的setting页面中点击op ...
- 如何用卷积神经网络CNN识别手写数字集?
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP, ...
- 浅谈javascript面向对象
我们常用的两种编程模式 POP--面向过程编程(Process-oriented programming) 面向过程编程是以功能为中心来进行思考和组织的一种编程方法,它强调的是系统的数据被加工和处理的 ...
- hihocoder-1453-Rikka with Tree
#Hihocoder 1453 : Rikka with Tree 时间限制:10000ms 单点时限:1000ms 内存限制:256MB source: https://hihocoder.co ...
- oracle日常——sqlplus客户端登录
1.进入cmd 2.命令--sqlplus--提示输入帐号与密码 3.进入后,就可以直接键入sql命令 ps.sql命令后面需要添加分号后才可以回车执行
- adb devices 偵測不到 手機
現象: system 有偵測到 mobile phone, xxx@xxx-ThinkPad-T460p:~/.android$ lsusb Bus Device : ID 1d6b: Linux F ...
- Web javascript 中常用API合集
来源于:https://www.kancloud.cn/dennis/tgjavascript/241852 一.节点 1.1 节点属性 Node.nodeName //返回节点名称,只读 Node. ...
- ASP.NET-DataList控件-DataList嵌套
DataList是ASP.NET的数据控件之一,在使用时要对其进行数据绑定.但是使用过程中难免会出现需要根据已绑定表中的某列数据来作进一步的查询和显示,就需要使用DataList嵌套来解决此类问题. ...
- 修改form表单的黄色背景
input:-webkit-autofill { -webkit-box-shadow: 0 0 0px 1000px white inset; }