P1282 多米诺骨牌[可行性01背包]
题目来源:洛谷
题目描述
多米诺骨牌有上下2个方块组成,每个方块中有1~6个点。现有排成行的
上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|。例如在图8-1中,S1=6+1+1+1=9,S2=1+5+3+2=11,|S1-S2|=2。每个多米诺骨牌可以旋转180°,使得上下两个方块互换位置。 编程用最少的旋转次数使多米诺骨牌上下2行点数之差达到最小。

对于图中的例子,只要将最后一个多米诺骨牌旋转180°,可使上下2行点数之差为0。
输入输出格式
输入格式:
输入文件的第一行是一个正整数n(1≤n≤1000),表示多米诺骨牌数。接下来的n行表示n个多米诺骨牌的点数。每行有两个用空格隔开的正整数,表示多米诺骨牌上下方块中的点数a和b,且1≤a,b≤6。
输出格式:
输出文件仅一行,包含一个整数。表示求得的最小旋转次数。
输入输出样例
4
6 1
1 5
1 3
1 2
1
解析:
灰常好的一道高质量题目。通过这道题,可以让你稍稍理解到背包问题的本质。
【可行性背包】
if(j>=a[i]) dp[i][j]=min(dp[i][j],dp[i-1][j-a[i]]);//不转
if(j>=b[i]) dp[i][j]=min(dp[i][j],dp[i-1][j-b[i]]+1);//转动
初始状态:
假设上面那一排的输入数据为up[],下面那一行为down[];
如果第一个牌上下不等,那么就是dp[1][up[1]]=0,dp[1][down[1]]=1,也就是最开始可以把下面的牌转动到上面;
如果第一个牌上下相等,就是dp[1][up[1]]=dp[1][down[1]]=0,就是转不转都一样嘛。
很好,由于是可行性背包,现在我们只需要注意一下背包容量也就是状态大小到达了6*n,就是最大总和。
完事。
参考代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 1010
#define MOD 2520
#define E 1e-12
using namespace std;
int dp[N][N*],a[N],b[N],cnt;
int main()
{
int n;
cin>>n;
for(int i=;i<=n;i++)
scanf("%d%d",&a[i],&b[i]),cnt+=a[i]+b[i];
memset(dp,0x3f,sizeof(dp));
if(a[]!=b[]) dp[][a[]]=,dp[][b[]]=;
else dp[][a[]]=0,dp[][b[]]=0;
//对于任意一个牌i,到i的可能的和可以达到6*n
//状态设计为dp[i][j]表示到第i个牌,若上面那一行的总和为j时所能得到的最少转动次数
for(int i=;i<=n;i++)
for(int j=;j<=*n;j++){
if(j>=a[i]) dp[i][j]=min(dp[i][j],dp[i-][j-a[i]]);//不转
if(j>=b[i]) dp[i][j]=min(dp[i][j],dp[i-][j-b[i]]+);//转动
} int minc=INF,ans=INF;//minc最小差值,ans最小交换次数
for(int i=;i<=cnt;i++){
if(dp[n][i]<INF){//如果总和为i的情况存在
if(abs(i-(cnt-i))<minc){//记下最小差值和最小交换次数
minc=abs(i-(cnt-i));ans=dp[n][i];
}
else if(abs(i-(cnt-i))==minc)//在最小差值最小时,还要比较交换次数
ans=min(ans,dp[n][i]);
}
}
cout<<ans<<endl;
return ;
}
P1282 多米诺骨牌[可行性01背包]的更多相关文章
- P1282 多米诺骨牌
P1282 多米诺骨牌 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S ...
- 洛谷P1282 多米诺骨牌
P1282 多米诺骨牌 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S ...
- P1282 多米诺骨牌【dp】
P1282 多米诺骨牌 提交 20.02k 通过 6.30k 时间限制 1.00s 内存限制 125.00MB 题目提供者洛谷 难度提高+/省选- 历史分数100 提交记录 查看题解 标签 查看算 ...
- 洛谷P1282 多米诺骨牌 (DP)
洛谷P1282 多米诺骨牌 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中 ...
- poj 1717==洛谷P1282 多米诺骨牌
Dominoes Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6571 Accepted: 2178 Descript ...
- 【01背包】洛谷P1282多米诺骨牌
题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S1=6+1+1+1=9, ...
- P1282 多米诺骨牌 (背包变形问题)
题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S1=6+1+1+1=9, ...
- P1282 多米诺骨牌 (差值DP+背包)
题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S1=6+1+1+1=9, ...
- ACM - 动态规划 - P1282 多米诺骨牌
多米诺骨牌由上下 \(2\) 个方块组成,每个方块中有 \(1 \sim 6\) 个点.现有排成行的上方块中点数之和记为 \(S_1\),下方块中点数之和记为 \(S_2\),它们的差为 \(\lef ...
随机推荐
- 【GStreamer开发】GStreamer播放教程05——色彩平衡
目标 亮度,对比度,色度和饱和度都是常见的视频调节参数,也是GStreamer里面设置色彩平衡的参数.本教程将展示: 如何发现可用的色彩平衡通道 如何改变它们 介绍 <GStreamer基础教程 ...
- 查找searching
查找searching 在有序数列中查找某一个数据时候的算法设计 查找表的分类 静态查找表:只进行查找操作 动态查找表:不断的插入不存在,删除已存在 查找表的操作 查找.插入.删除 查找也叫检索,是根 ...
- 微信公众号使用vue,安卓端点击按钮404,ios访问正常问题
情景:微信公众号使用vue开发的单页面,在安卓端点击按钮访问显示404,ios访问正常问题,能正常显示. 解决:将微信公众号菜单按钮设置的路径中把WWW去掉后,安卓.ios都能正常访问. 问题路径ww ...
- 第07组 Alpha冲刺(3/4)
队名:秃头小队 组长博客 作业博客 组长徐俊杰 过去两天完成的任务:完成人员分配,初步学习Android开发 Github签入记录 接下来的计划:继续完成Android开发的学习,带领团队进行前后端开 ...
- windows下大数据开发环境搭建(3)——Scala环境搭建
一.所需环境 ·Java 8 二.下载Scala https://www.scala-lang.org/download/ 三.配置环境变量 SCALA_HOME: C:\scala Path: ...
- Win10使用Xmanager6远程桌面连接CentOS7服务器
服务器:CentOS 7.6 GNOME桌面环境(若最小化安装,默认是无桌面的,那么就要安装桌面,参考百度) 个人主机:Windows 10专业版,请安装Xmanager Power Suite 6( ...
- 《Mysql - 如何恢复和避免误删除?》
一:误删数据 (如何恢复和避免误删除) - 使用 delete 语句误删数据行: - 使用 drop table 或者 truncate table 语句误删数据表: - 使用 drop databa ...
- Python31之类和对象1(三大特征:多封继——多疯子)
一.对象: Python即是面向对象的编程也是面向过程的编程语言,其内部可谓是无处不对象,我们所熟知的列表,字符串等工厂函数本质上都是对象.对象其实是对属性和方法的封装. 属性是对象的静态特征 方法是 ...
- 2019秋季PAT甲级_备考总结
2019 秋季 PAT 甲级 备考总结 在 2019/9/8 的 PAT 甲级考试中拿到了满分,考试题目的C++题解记录在这里,此处对备考过程和考试情况做一个总结.如果我的方法能帮助到碰巧点进来的有缘 ...
- django 相关配置(pycharm)
第二步