注,reduce之前已经shuff。

mapper.py

#!/usr/bin/env python
"""mapper.py"""

import sys

# input comes from STDIN (standard input)
for line in sys.stdin:
    # remove leading and trailing whitespace
    line = line.strip()
    # split the line into words
    words = line.split()
    # increase counters
    for word in words:
        # write the results to STDOUT (standard output);
        # what we output here will be the input for the
        # Reduce step, i.e. the input for reducer.py
        #
        # tab-delimited; the trivial word count is 1
        print '%s\t%s' % (word, 1)

reducer.py

#!/usr/bin/env python
"""reducer.py"""

from operator import itemgetter
import sys

current_word = None
current_count = 0
word = None

# input comes from STDIN
for line in sys.stdin:
    # remove leading and trailing whitespace
    line = line.strip()

    # parse the input we got from mapper.py
    word, count = line.split('\t', 1)

    # convert count (currently a string) to int
    try:
        count = int(count)
    except ValueError:
        # count was not a number, so silently
        # ignore/discard this line
        continue

    # this IF-switch only works because Hadoop sorts map output
    # by key (here: word) before it is passed to the reducer
    if current_word == word:
        current_count += count
    else:
        if current_word:
            # write result to STDOUT
            print '%s\t%s' % (current_word, current_count)
        current_count = count
        current_word = word

# do not forget to output the last word if needed!
if current_word == word:
    print '%s\t%s' % (current_word, current_count)

Improved Mapper and Reducer code: using Python iterators and generators

mapper.py

#!/usr/bin/env python
"""A more advanced Mapper, using Python iterators and generators."""

import sys

def read_input(file):
    for line in file:
        # split the line into words
        yield line.split()

def main(separator='\t'):
    # input comes from STDIN (standard input)
    data = read_input(sys.stdin)
    for words in data:
        # write the results to STDOUT (standard output);
        # what we output here will be the input for the
        # Reduce step, i.e. the input for reducer.py
        #
        # tab-delimited; the trivial word count is 1
        for word in words:
            print '%s%s%d' % (word, separator, 1)

if __name__ == "__main__":
    main()

reducer.py

#!/usr/bin/env python
"""A more advanced Reducer, using Python iterators and generators."""

from itertools import groupby
from operator import itemgetter
import sys

def read_mapper_output(file, separator='\t'):
    for line in file:
        yield line.rstrip().split(separator, 1)

def main(separator='\t'):
    # input comes from STDIN (standard input)
    data = read_mapper_output(sys.stdin, separator=separator)
    # groupby groups multiple word-count pairs by word,
    # and creates an iterator that returns consecutive keys and their group:
    #   current_word - string containing a word (the key)
    #   group - iterator yielding all ["<current_word>", "<count>"] items
    for current_word, group in groupby(data, itemgetter(0)):
        try:
            total_count = sum(int(count) for current_word, count in group)
            print "%s%s%d" % (current_word, separator, total_count)
        except ValueError:
            # count was not a number, so silently discard this item
            pass

if __name__ == "__main__":
    main()

从groupby 理解mapper-reducer的更多相关文章

  1. hadoop2.7之Mapper/reducer源码分析

    一切从示例程序开始: 示例程序 Hadoop2.7 提供的示例程序WordCount.java package org.apache.hadoop.examples; import java.io.I ...

  2. hadoop mapper reducer

    Local模式运行MR流程------------------------- 1.创建外部Job(mapreduce.Job),设置配置信息 2.通过jobsubmitter将job.xml + sp ...

  3. Mapper 与 Reducer 解析

    1 . 旧版 API 的 Mapper/Reducer 解析 Mapper/Reducer 中封装了应用程序的数据处理逻辑.为了简化接口,MapReduce 要求所有存储在底层分布式文件系统上的数据均 ...

  4. Mapper类/Reducer类中的setup方法和cleanup方法以及run方法的介绍

    在hadoop的源码中,基类Mapper类和Reducer类中都是只包含四个方法:setup方法,cleanup方法,run方法,map方法.如下所示: 其方法的调用方式是在run方法中,如下所示: ...

  5. JVM | 第1部分:自动内存管理与性能调优《深入理解 Java 虚拟机》

    目录 前言 1. 自动内存管理 1.1 JVM运行时数据区 1.2 Java 内存结构 1.3 HotSpot 虚拟机创建对象 1.4 HotSpot 虚拟机的对象内存布局 1.5 访问对象 2. 垃 ...

  6. hadoop之mapper类妙用

    1. Mapper类 首先 Mapper类有四个方法: (1) protected void setup(Context context) (2) Protected void map(KEYIN k ...

  7. Mybatis 入门到理解篇

    MyBatis         MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code, ...

  8. 【转】Hive配置文件中配置项的含义详解(收藏版)

    http://www.aboutyun.com/thread-7548-1-1.html 这里面列出了hive几乎所有的配置项,下面问题只是说出了几种配置项目的作用.更多内容,可以查看内容问题导读:1 ...

  9. 为你揭秘知乎是如何搞AI的——窥大厂 | 数智方法论第1期

    文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 数智物语(公众号ID:decision_engine)出品 策划.编写:卷毛雅各布 「我们相信,在垃圾 ...

随机推荐

  1. 构建Springboot项目的3种方式

    一.自己创建: 1.创建maven项目 2.pom.xml添加如下内容: <!--1.指定依赖都由springboot管理--> <parent> <groupId> ...

  2. visual studio 2017搭建linux c++开发环境

    https://blog.csdn.net/cekonghyj/article/details/77917433 https://blog.csdn.net/norsd/article/details ...

  3. 任务调度之Quartz.Net基础

    最近公司要求将之前的系统设计文档补上,于是大家就都被分配了不同的任务,紧锣密鼓的写起了文档来.发现之前项目中使用了Quartz.Net来做一些定时任务的调度,比如定时的删除未支付的订单,定时检查支付状 ...

  4. [转帖]谷歌宣称首次实现量子优越性,IBM“不服”,中国同行咋看?

    谷歌宣称首次实现量子优越性,IBM“不服”,中国同行咋看? 投递人 itwriter 发布于 2019-10-24 15:46 评论(7) 有306人阅读 原文链接 [收藏] « » https:// ...

  5. springMVC设置不拦截静态资源的方法

    SpringMVC提供<mvc:resources>来设置静态资源,但是增加该设置如果采用通配符的方式增加拦截器的话仍然会被拦截器拦截,可采用如下方案进行解决: 方案一.拦截器中增加针对静 ...

  6. 数据结构:队列queue 函数push() pop size empty front back

    队列queue: push() pop() size() empty() front() back() push()  队列中由于是先进先出,push即在队尾插入一个元素,如:可以输出:Hello W ...

  7. mysql数据库,数据表,数据的增删查改语句

    查询mysql支持的引擎 show engines; 查询mysql支持的字符集 show character set; 设置mysql默认存储引擎 set default_storage_engin ...

  8. 关于#define 的宏替换的一些问题

    #define PI 3.14; int main() { , s = ; s = r * r * PI; s = PI * r * r; // s = 3.14; * r * r; printf(& ...

  9. 文件流FileStream的读写

    1.FileStream文件流的概念: FileStream 类对文件系统上的文件进行读取.写入.打开和关闭操作,并对其他与文件相关的操作系统句柄进行操作,如管道.标准输入和标准输出.读写操作可以指定 ...

  10. 在Windows平台搭建C语言开发环境

    一.在Windows平台搭建DEV C++集成开发环境     官网 https://sourceforge.net/projects/orwelldevcpp/ 中下载Dev C++运行即可 环境准 ...