注,reduce之前已经shuff。

mapper.py

#!/usr/bin/env python
"""mapper.py"""

import sys

# input comes from STDIN (standard input)
for line in sys.stdin:
    # remove leading and trailing whitespace
    line = line.strip()
    # split the line into words
    words = line.split()
    # increase counters
    for word in words:
        # write the results to STDOUT (standard output);
        # what we output here will be the input for the
        # Reduce step, i.e. the input for reducer.py
        #
        # tab-delimited; the trivial word count is 1
        print '%s\t%s' % (word, 1)

reducer.py

#!/usr/bin/env python
"""reducer.py"""

from operator import itemgetter
import sys

current_word = None
current_count = 0
word = None

# input comes from STDIN
for line in sys.stdin:
    # remove leading and trailing whitespace
    line = line.strip()

    # parse the input we got from mapper.py
    word, count = line.split('\t', 1)

    # convert count (currently a string) to int
    try:
        count = int(count)
    except ValueError:
        # count was not a number, so silently
        # ignore/discard this line
        continue

    # this IF-switch only works because Hadoop sorts map output
    # by key (here: word) before it is passed to the reducer
    if current_word == word:
        current_count += count
    else:
        if current_word:
            # write result to STDOUT
            print '%s\t%s' % (current_word, current_count)
        current_count = count
        current_word = word

# do not forget to output the last word if needed!
if current_word == word:
    print '%s\t%s' % (current_word, current_count)

Improved Mapper and Reducer code: using Python iterators and generators

mapper.py

#!/usr/bin/env python
"""A more advanced Mapper, using Python iterators and generators."""

import sys

def read_input(file):
    for line in file:
        # split the line into words
        yield line.split()

def main(separator='\t'):
    # input comes from STDIN (standard input)
    data = read_input(sys.stdin)
    for words in data:
        # write the results to STDOUT (standard output);
        # what we output here will be the input for the
        # Reduce step, i.e. the input for reducer.py
        #
        # tab-delimited; the trivial word count is 1
        for word in words:
            print '%s%s%d' % (word, separator, 1)

if __name__ == "__main__":
    main()

reducer.py

#!/usr/bin/env python
"""A more advanced Reducer, using Python iterators and generators."""

from itertools import groupby
from operator import itemgetter
import sys

def read_mapper_output(file, separator='\t'):
    for line in file:
        yield line.rstrip().split(separator, 1)

def main(separator='\t'):
    # input comes from STDIN (standard input)
    data = read_mapper_output(sys.stdin, separator=separator)
    # groupby groups multiple word-count pairs by word,
    # and creates an iterator that returns consecutive keys and their group:
    #   current_word - string containing a word (the key)
    #   group - iterator yielding all ["<current_word>", "<count>"] items
    for current_word, group in groupby(data, itemgetter(0)):
        try:
            total_count = sum(int(count) for current_word, count in group)
            print "%s%s%d" % (current_word, separator, total_count)
        except ValueError:
            # count was not a number, so silently discard this item
            pass

if __name__ == "__main__":
    main()

从groupby 理解mapper-reducer的更多相关文章

  1. hadoop2.7之Mapper/reducer源码分析

    一切从示例程序开始: 示例程序 Hadoop2.7 提供的示例程序WordCount.java package org.apache.hadoop.examples; import java.io.I ...

  2. hadoop mapper reducer

    Local模式运行MR流程------------------------- 1.创建外部Job(mapreduce.Job),设置配置信息 2.通过jobsubmitter将job.xml + sp ...

  3. Mapper 与 Reducer 解析

    1 . 旧版 API 的 Mapper/Reducer 解析 Mapper/Reducer 中封装了应用程序的数据处理逻辑.为了简化接口,MapReduce 要求所有存储在底层分布式文件系统上的数据均 ...

  4. Mapper类/Reducer类中的setup方法和cleanup方法以及run方法的介绍

    在hadoop的源码中,基类Mapper类和Reducer类中都是只包含四个方法:setup方法,cleanup方法,run方法,map方法.如下所示: 其方法的调用方式是在run方法中,如下所示: ...

  5. JVM | 第1部分:自动内存管理与性能调优《深入理解 Java 虚拟机》

    目录 前言 1. 自动内存管理 1.1 JVM运行时数据区 1.2 Java 内存结构 1.3 HotSpot 虚拟机创建对象 1.4 HotSpot 虚拟机的对象内存布局 1.5 访问对象 2. 垃 ...

  6. hadoop之mapper类妙用

    1. Mapper类 首先 Mapper类有四个方法: (1) protected void setup(Context context) (2) Protected void map(KEYIN k ...

  7. Mybatis 入门到理解篇

    MyBatis         MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code, ...

  8. 【转】Hive配置文件中配置项的含义详解(收藏版)

    http://www.aboutyun.com/thread-7548-1-1.html 这里面列出了hive几乎所有的配置项,下面问题只是说出了几种配置项目的作用.更多内容,可以查看内容问题导读:1 ...

  9. 为你揭秘知乎是如何搞AI的——窥大厂 | 数智方法论第1期

    文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 数智物语(公众号ID:decision_engine)出品 策划.编写:卷毛雅各布 「我们相信,在垃圾 ...

随机推荐

  1. 基于vue-cli、elementUI的Vue简单入门例子

    vue-cli.elementUI的安装教程请看: https://www.cnblogs.com/joe235/p/12013818.html 把HelloWorld.vue文件修改为: <t ...

  2. Django_图片的上传下载显示配置

    图片上传的配置 image = models.ImageField(upload_to='org/%Y/%m',...) upload_to默认是上传到项目的'MEDIA_ROOT/org/%Y/%m ...

  3. C# 人工智能开源库生物特征

    C# 人工智能开源库生物特征 Machine learning made in a minute http://accord-framework.net/ Accord.NET是AForge.NET框 ...

  4. Appium移动自动化测试-----(五)python-client安装与测试

    前提条件 当你点击这一章时,说明你是打算使用 Python 语言编写 appium 自动化测试脚本的. 1.安装 Python 语言 , Python的安装相对相简单得多. 2.Python 编辑器很 ...

  5. left join 和inner join关联查询区别

    inner join 必须两边对应才能查处结果 left join 用主表关联副表,关联不出来依然显示结果

  6. hadoop 集群调优实践总结

    调优概述# 几乎在很多场景,MapRdeuce或者说分布式架构,都会在IO受限,硬盘或者网络读取数据遇到瓶颈.处理数据瓶颈CPU受限.大量的硬盘读写数据是海量数据分析常见情况. IO受限例子: 索引 ...

  7. Centos7.5 添加环境变量并生效

    配置环境变量用户 jiangshan为例(base) [jiangshan@localhost ~]$ export PATH=$PATH:/usr/local/MATLAB/R2014a/bin/( ...

  8. 自然语言处理(简称NLP)

    自然语言处理(简称NLP),是研究计算机处理人类语言的一门技术,包括: 1.句法语义分析:对于给定的句子,进行分词.词性标记.命名实体识别和链接.句法分析.语义角色识别和多义词消歧. 2.信息抽取:从 ...

  9. IDEA 的操作与使用

    idea 设置syso File –> Setting –> Editor –> Live Templates debug 调试: F7 在 Debug 模式下,进入下一步,如果当前 ...

  10. IdentityServer4 学习三

    ClientCredentials客户端类型实现 客户端应用向IdentityServer请求AccessToken,IdentityServer验证通过把AccessToken返回给客户端应用,客户 ...