link

.... 感觉自己太颓废了。。。。还是来更题解吧。。。【话说写博客会不会涨 rp 啊 qaq ?

题意:

有 n 个物品,每个都有一个 [1,D] 中随机的颜色,相同颜色的两个物品可以配对。现在要求至少能配 m 对,问方案数? $n,m\leq 10^9,D\leq 10^5$

题解:

配对数量 $\geq m \Longleftrightarrow$ 出现奇数次的权值个数 $\leq n-2m$ 。

一个权值出现偶数次的生成函数: $\frac{e^x +e^{-x}}{2}$

一个权值出现奇数次的生成函数: $\frac{e^x - e^{-x}}{2}$

答案的式子:

$$ \begin{aligned} &n!\sum_{k=0}^{n-2m} \left ( \frac{e^x +e^{-x}}{2} + y \frac{e^x - e^{-x}}{2} \right )^D [x^n][y^k]\\ =&n!\left (\frac12 \right )^D \sum_{k=0}^{n-2m} \left (e^x + e^{-x} + y\left ( e^x - e^{-x} \right )\right )^D[x^n][y^k]\\ =&n!\left (\frac12 \right )^D \sum_{k=0}^{n-2m} \left (e^x (1+y) + e^{-x}(1-y) \right )^D[x^n][y^k]\\ =&n!\left (\frac12 \right )^D \sum_{k=0}^{n-2m} \sum_{i=0}^{D}\binom{D}{i} \left (e^{x}(1+y) \right )^i \left( e^{-x}(1-y)\right )^{D-i} [x^n][y^k]\\ =&n!\left (\frac12 \right )^D \sum_{k=0}^{n-2m} \sum_{i=0}^{D}\binom{D}{i} e^{\left (2i-D\right )x} (1+y)^i (1-y)^{D-i} [x^n][y^k]\\ =&\left (\frac12 \right )^D \sum_{i=0}^{D} \binom{D}{i} (2i-D)^n \sum_{k=0}^{n-2m} (1+y)^i (1-y)^{D-i} [y^k] \end{aligned}$$

这就是最后的式子。

考虑怎么对于每个 i 快速求出后面的 $\sum_{k=0}^{n-2m} (1+y)^i (1-y)^{D-i} [y^k]$ ?

可以发现这是一个生成函数的系数前缀和。

即 $\left ( (1+y)^i (1-y)^{D-i} \right )\left (1+y+y^2+y^3+...\right ) [y^{n-2m}]$ ;

即 $\left ( (1+y)^i (1-y)^{D-i} \right )\left (\frac{1}{1-y}\right ) [y^{n-2m}]$ 。

可以发现当 $i\neq D$ 的时候,上式 $= \left ( (1+y)^i (1-y)^{D-i-1} \right )[y^{n-2m}]$ ;

$i=D$ 的时候上式 $=\sum_{k=0}^{n-2m} (1+y)^D [y^k]$ ,由于 $(1+y)^D$ 中 $y$ 不超过 D 次,所以有效的 $k\leq D$ ,暴力计算即可。

那 $i\neq D$ 的时候怎么办呢?我们记 $k=n-2m$ ,$d=D-1$ ,枚举两边对 k 的贡献,即

$$\sum_{j=0}^k \binom{i}{j} \binom{d-i}{k-j}(-1)^{k-j}$$

这种组合数的形式的转化当然是套路的阶乘展开啦——

$$\begin{aligned} \sum_{j=0}^k \frac{i!}{j!(i-j)!} \cdot \frac{(d-i)!}{(k-j)!(d-i-k+j)!} \cdot (-1)^{k-j}\\ =i!(d-i)!\sum_{j=0}^k \frac{(-1)^{k-j}}{j!(k-j)!} \cdot \frac{1}{(i-j)!(d-i-k+j)!}\\ \end{aligned}$$

就是个卷积形式了, fft 即可。

复杂度 $\mathcal{O}(D \log D).$

code:

 #include<bits/stdc++.h>
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define ll long long using namespace std; const int N=(<<)+,mod=,inv2=(mod+)>>;
int D,n,m,k,d,fac[N],ifac[N],ans,invn,w[N],r[N],a[N],b[N]; int ksm(int x,int y){
int s=; x=(x+mod)%mod;
for (;y;y>>=,x=(ll)x*x%mod) if (y&) s=(ll)s*x%mod;
return s;
} void init(int n){
fac[]=;
rep (i,,n) fac[i]=(ll)fac[i-]*i%mod;
ifac[n]=ksm(fac[n],mod-);
for (int i=n;i;i--) ifac[i-]=(ll)ifac[i]*i%mod;
} int C(int n,int m){
if (n<m) return ;
return (ll)fac[n]*ifac[m]%mod*ifac[n-m]%mod;
} inline void upd(int &x,int y){x+=y; x-=x>=mod?mod:;} void fft_init(int &n){
int len=; while (<<len<n) len++; n=<<len;
int G=ksm(,(mod-)>>len); invn=ksm(n,mod-);
w[]=w[n]=;
rep (i,,n-) w[i]=(ll)w[i-]*G%mod,r[i]=(r[i>>]>>)|((i&)<<(len-));
} void fft(int *a,int all,int fl){
rep (i,,all-) if (i<r[i]) swap(a[i],a[r[i]]);
int n=,m=,x=all>>;
for (;n<=all;m=n,n<<=,x>>=)
for (int i=;i<all;i+=n)
for (int k=;k<m;k++){
int t=(ll)w[fl?all-x*k:x*k]*a[i+m+k]%mod;
a[i+m+k]=(a[i+k]+mod-t)%mod;
a[i+k]=(a[i+k]+t)%mod;
}
if (fl) rep (i,,all-) a[i]=(ll)a[i]*invn%mod;
} int main(){
scanf("%d%d%d",&D,&n,&m),init(D);
k=min(n-*m,D),d=D-;
rep (i,,k) a[i]=(ll)(((k-i)&)?mod-:)%mod*ifac[i]%mod*ifac[k-i]%mod;
rep (i,,d) if (d-k-i>=) b[i]=(ll)ifac[i]%mod*ifac[d-k-i]%mod;
int _n=k+d+; fft_init(_n);
fft(a,_n,),fft(b,_n,);
rep (i,,_n-) a[i]=(ll)a[i]*b[i]%mod;
fft(a,_n,);
rep (i,,d) a[i]=(ll)a[i]*fac[i]%mod*fac[d-i]%mod;
rep (i,,D){
int v=(ll)C(D,i)*ksm(*i-D,n)%mod,tmp=;
if (i==D) rep (i,,k) upd(tmp,C(D,i));
else tmp=a[i];
upd(ans,(ll)tmp*v%mod);
}
printf("%lld\n",(ll)ans*ksm(inv2,D)%mod);
return ;
}

loj3120 「CTS2019 | CTSC2019」珍珠的更多相关文章

  1. LOJ 3120: 洛谷 P5401: 「CTS2019 | CTSC2019」珍珠

    题目传送门:LOJ #3120. 题意简述: 称一个长度为 \(n\),元素取值为 \([1,D]\) 的整数序列是合法的,当且仅当其中能够选出至少 \(m\) 对相同元素(不能重复选出元素). 问合 ...

  2. 【LOJ】#3120. 「CTS2019 | CTSC2019」珍珠

    LOJ3120 52pts \(N - D >= 2M\)或者\(M = 0\)那么就是\(D^{N}\) 只和数字的奇偶性有关,如果有k个奇数,那么必须满足\(N - k >= 2M\) ...

  3. @loj - 3120@ 「CTS2019 | CTSC2019」珍珠

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 有 \(n\) 个在范围 \([1, D]\) 内的整数均匀随机 ...

  4. Loj #3124. 「CTS2019 | CTSC2019」氪金手游

    Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 ...

  5. 「CTS2019 | CTSC2019」氪金手游 解题报告

    「CTS2019 | CTSC2019」氪金手游 降 智 好 题 ... 考场上签到失败了,没想容斥就只打了20分暴力... 考虑一个事情,你抽中一个度为0的点,相当于把这个点删掉了(当然你也只能抽中 ...

  6. 「CTS2019 | CTSC2019」随机立方体 解题报告

    「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\( ...

  7. LOJ 3119: 洛谷 P5400: 「CTS2019 | CTSC2019」随机立方体

    题目传送门:LOJ #3119. 题意简述: 题目说的很清楚了. 题解: 记恰好有 \(i\) 个极大的数的方案数为 \(\mathrm{cnt}[i]\),则答案为 \(\displaystyle\ ...

  8. LOJ #3119「CTS2019 | CTSC2019」随机立方体 (容斥)

    博客链接 里面有个下降幂应该是上升幂 还有个bk的式子省略了k^3 CODE 蛮短的 #include <bits/stdc++.h> using namespace std; const ...

  9. 【LOJ】#3123. 「CTS2019 | CTSC2019」重复

    LOJ3123 60pts 正难则反,熟练转成总方案数减掉每个片段都大于等于s的字典序的方案 按照一般的套路建出kmp上每个点加一个字符的转移边的图(注意这个图开始字母必须是nxt链中下一个相邻的字符 ...

随机推荐

  1. JDBC连接池的testQuery/validationQuery设置

    在<Tomcat中使用Connector/J连接MySQL的超时问题>帖子中想要增加对连接池中连接的测试/验证,防止数据库认为连接已死而Web应用服务器认为连接还有效的问题,Mysql文档 ...

  2. 《一头扎进》系列之Python+Selenium框架设计篇5 - 价值好几K的框架,哎呦!这个框架还真有点料啊!!!

    1. 简介 其实,到前面这一篇文章,简单的Python+Selenium自动化测试框架就已经算实现了.接下来的主要是介绍,unittest管理脚本,如何如何加载执行脚本,再就是采用第三方插件,实现输出 ...

  3. linux命令行删除N天前的数据的命令

    命令:  find . -mtime +N -type f -name "*.log.*" -exec rm -f {} \; 简单解释: find .查询  ; -mtime 规 ...

  4. JavaScript常用节点类型

    一.常用节点类型: nodeType:节点类型 nodeName:节点名称 nodeValue:节点值 1.查看节点类型(控制台操作): 获取元素:var p = document.getElemen ...

  5. OpenStack kilo版(3) Nova部署

    部署在controller和compute节点 配置数据库 MariaDB [(none)]> CREATE DATABASE nova;  Query OK, 1 row affected ( ...

  6. WebService 的发布和调用

    WebService 四种发布方式总结 :https://blog.csdn.net/zl834205311/article/details/51612207 调用webService的几种方式 ht ...

  7. Mysql之表的查询

    一.单表的查询 首先让我们先熟悉一下mysql语句在查询操作时执行的顺序: (1)from  (2) on  (3) join  (4) where  (5)group by  (6) avg,sum ...

  8. NSIP

    1. 第一章 信息安全概述 信息:信息是有意义的数据,具有一定的价值,是一种适当保护的资产,数据是是客观事务属性的记录,是信息的具体表现形式,数据经过加工处理之后 就是信息,而信息需要经过数字处理转换 ...

  9. Nginx+PHP负载均衡集群环境中Session共享方案 - 运维笔记

    在网站使用nginx+php做负载均衡情况下,同一个IP访问同一个页面会被分配到不同的服务器上,如果session不同步的话,就会出现很多问题,比如说最常见的登录状态. 下面罗列几种nginx负载均衡 ...

  10. PS批量制作获奖证书并导出PNG

    其实方法和"使用PS批量制作视频字幕"的方法类似.区别在于制作视频字幕时导出成psd格式就可以直接导入Premiere中使用了,而获奖证书考虑到打印设备有无PS的不确定性,可能需要 ...