T1 divide

题意:

有\(n\)个数 \(a_1, a_2,..., a_n\) 有m个数\(b_1, b_2,..., b_n\)

令\(a = a_1\times a_2\,\times ... \times \,a_n\)

令\(b = b_1\times\,b_2 \times\,...\,\times\,b_n\)

判断\(a\)是否是\(b\)的倍数

输入:\(n,m\)

输出:\(Yes / No\)

做法:就是个一简单的质因数分解

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n, m;
int a[1010], b[1010];
int p[3][20]={};
void divid(int op, int x)
{
if(x == 1) return;
if(x == 2) p[op][1]++;
if(x == 3) p[op][2]++;
if(x == 4) p[op][1] += 2;
if(x == 5) p[op][3]++;
if(x == 6) {p[op][1]++; p[op][2]++;}
return;
}
int main()
{
freopen("divide.in","r",stdin);
freopen("divide.out","w",stdout);
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
divid(1, a[i]);
}
for(int i = 1; i <= m; i++)
{
scanf("%d", &b[i]);
divid(2, b[i]);
}
for(int i = 1; i <= 3; i++)
{
if(p[1][i] >= p[2][i])continue;
else
{
printf("No\n"); return 0;
}
}
printf("Yes\n");
return 0;
}
/*
样例:
输入:2 3
6 6
1 3 4
输出:Yes
*/

T2 graph

题意:

现在要生成一张n个点的有向图。要求满足:

1.若有\(a-> b\)的边,则有\(b->a\)的边

2.若有\(a->b\)的边和\(b->c\)的边,则有\(a->c\)的边

3.至少有一个点没有自环

求方案数。 由于结果可能较大,结果对\(m\)取模

输入:\(n,m\)

输出:答案

做法:

这道题除了题意比较坑以外,没有什么太大的难点。需要注意的是,按照题意,如果一个点所在的连通块大小大于或等于2,则该点一定有自环。

我的做法是:设\(f[i][0]\)表示\(i\)个点自由组合,且每个点都存在自环的方案数

​ \(f[i][1]\)表示\(i\)个点自由组合,且至少有\(1\)个点没有自环的方案数

我转移方程的方法有点独特,我是看\(1\)号点所在的连通块的点的个数进行转移,需要注意的是转移是需要讨论\(1\)号点是否孤立为一个点,若孤立,则有\(1\)号点自环和不自环的两种情况,需分别进行讨论,状态转移方程如下:

\(f[i][1]+=f[i - 1][1]\,\,\,\,1\)号点孤立且\(1\)号点存在自环

\(f[i][1] += f[i - 1][1] + f[i - 1][0]\,\,\,\,1\)号点孤立且\(1\)号点不存在自环,则其他点可以自环,可以不自环

\(f[i][1] +=\sum_{j=2}^{i} f[i - j][1]\times C_{i-1}^{j-1} \,\,\,\,\)计算\(1\)号点所在的连通块大小为\(j\)时的方案数

\(f[i][0]+=f[i-1][0]\,\,\,\,1\)号点孤立时只能自环

\(f[i][0]+=\sum_{j=2}^{i} f[i - j][0]\times C_{i-1}^{j-1} \,\,\,\,\)计算\(1\)号点所在的连通块大小为\(j\)时的方案数

组合数用杨辉三角就可以了。

老师讲的做法是把“第\(1\)个点”改成“第\(i\)个点”,其实写法是一样的,只是思路不同而已。

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
#define maxn 2010
#define ll long long
int n, mol;
ll f[maxn][2];// 1:符合题意 0:不符合题意
ll C[maxn][maxn];
int main()
{
freopen("graph.in", "r", stdin);
freopen("graph.out", "w", stdout);
scanf("%d%d", &n, &mol);
for(int i = 0; i <= n; i++) C[i][0] = 1;
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= i; j++)
{
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % mol;
}
}
/* for(int i = 0; i <= n; i++)
{
for(int j = 0; j <= i; j++)
printf("C[%d][%d] = %lld ", i, j, C[i][j]);
printf("\n");
}
*/
f[1][1] = 1; f[1][0] = 1;
for(int i = 2; i <= n; i++)
{
f[i][1] = (f[i][1] + f[i - 1][1] + f[i - 1][0] + f[i - 1][1]) % mol;
f[i][0] = (f[i][0] + f[i - 1][0]) % mol;
for(int j = 2; j < i; j++)
{
// f[i][1] = (f[i][1] + ( ( ( (C[i - 1][j - 1] * S[j - 1][j - 1]) % mol ) * ( (f[i - j][0] + f[i - j][1]) % mol) ) % mol)) % mol;
f[i][1] = (f[i][1] + (C[i - 1][j - 1] * f[i - j][1]) % mol) % mol;
f[i][0] = (f[i][0] + (C[i - 1][j - 1] * f[i - j][0]) % mol) % mol;
}
f[i][0] = (f[i][0] + 1) % mol;
}
// for(int i = 1; i <= n; i++)
// printf("f[%d][0] = %lld f[%d][1] = %lld\n", i, f[i][0], i, f[i][1]);
printf("%lld\n", f[n][1]);
return 0;
}
/*
样例:
输入:2 5
输出:3
*/

T3 生成图

题意:

\(a=1\,\,\,b=0\)

进行不超过b次操作,每次可以选择一下两种操作之一:

\(1.\,\,b\,\,+=1\)

\(2.\,a\times b\)

最后得到一个整数\(a\),该整数位于\([l,r]\)之间,求最后的\(a\)有多少种可能

输入:\(l,r,p\)

输出:答案

做法:经过“观察”,我们发现答案很小,所以我们可以通过计算出所有可能的答案(有质因子超过p则该答案不可能),然后“离散化”就可以求出了,同时再计算需要的最小步数。

国庆集训Day1的更多相关文章

  1. 国庆集训 Day1 T2 生成图 DP

    国庆集训 Day1 T2 生成图 现在要生成一张\(n\)个点的有向图.要求满足: 1.若有 a->b的边,则有 b->a 的边 2.若有 a->b 的边和 b->c 的边,则 ...

  2. 牛客2018国庆集训 DAY1 D Love Live!(01字典树+启发式合并)

    牛客2018国庆集训 DAY1 D Love Live!(01字典树+启发式合并) 题意:给你一颗树,要求找出简单路径上最大权值为1~n每个边权对应的最大异或和 题解: 根据异或的性质我们可以得到 \ ...

  3. 长乐国庆集训Day1

    T1 统计数字 题目 [题目描述] 设 S(N ) 表示 N 的各位数字之和,如 S(484) = 4+8+4 = 16, S(22) = 2+2 = 4. 如果一个正整数满足 S(x*x) = S( ...

  4. 2019 牛客国庆集训day1 2019 点分治

    题目链接:https://ac.nowcoder.com/acm/contest/1099/I 点分治,计算路径数的时候,先将每个点到根的距离模2019,计算的时候就可以O(n)求出数目,对于模201 ...

  5. 【欧拉回路+最小生成树】SD开车@山东2018省队一轮集训day1

    目录 [欧拉回路+最小生成树]SD开车@山东2018省队一轮集训day1 PROBLEM 题目描述 输入 输出 样例输入 样例输出 提示 SOLUTION CODE [欧拉回路+最小生成树]SD开车@ ...

  6. 牛客国庆集训派对Day6 A Birthday 费用流

    牛客国庆集训派对Day6 A Birthday:https://www.nowcoder.com/acm/contest/206/A 题意: 恬恬的生日临近了.宇扬给她准备了一个蛋糕. 正如往常一样, ...

  7. 2019暑期金华集训 Day1 组合计数

    自闭集训 Day1 组合计数 T1 \(n\le 10\):直接暴力枚举. \(n\le 32\):meet in the middle,如果左边选了\(x\),右边选了\(y\)(且\(x+y\le ...

  8. 2019暑期金华集训 Day1 数据结构

    自闭集训 Day1 数据结构 CF643G 用类似于下面的方法,搬到线段树上. 如何合并两个集合?先全部放在一起,每次删掉最小的\(cnt_i\),然后把其他所有的\(cnt\)都减去\(cnt_i\ ...

  9. LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set(线性基,贪心)

    LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set $ solution: $ 这一题的重点在于优先级问题,我们应该先保证总和最大,然后再保证某一个最小.于是我 ...

随机推荐

  1. jq勾选

    1.取消勾选 $("box").attr("checked", false); 2.勾选 $("kbox").attr("chec ...

  2. Crossword Expert CodeForces - 1194F (期望)

    大意: $n$个题, 按照第$i$题随机$t_i$或$t_i+1$秒钟完成, 最多做$T$秒, 求做题数期望. 期望转为做题数$\ge x$的方案数之和最后再除以总方案数 这是因为$\sum\limi ...

  3. 音视频入门-01-认识RGB

    * 音视频入门文章目录 * RGB 简介 RGB 色彩模式是工业界的一种颜色标准,是通过对红(R).绿(G).蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的,RGB 即是代表红 ...

  4. 笔记 - C#从头开始构建编译器 - 3

    视频与PR:https://github.com/terrajobst/minsk/blob/master/docs/episode-03.md 作者是 Immo Landwerth(https:// ...

  5. 使用ef core自动生成mysql表和数据编码的问题

    mysql默认的编码是不支持中文的,需要改成utf8编码格式. 而我使用的Pomelo.EntityFrameworkCore.MySql组件生成mysql库和表,他是使用默认编码的. 网上大多说修改 ...

  6. Ajax中解析Json的两种方法

    eval(); //此方法不推荐 JSON.parse(); //推荐方法 一.两种方法的区别 我们先初始化一个json格式的对象: var jsonDate = '{ "name" ...

  7. JAVA文件IO总结

    文件流的操作有两种:字节流.字符流 字节流:FileInputStream,FileInputStream 字符流:InputStreamReader,OutputStreamReader 这两种流对 ...

  8. Java中的ThreadLocal详解

    一.ThreadLocal简介 多线程访问同一个共享变量的时候容易出现并发问题,特别是多个线程对一个变量进行写入的时候,为了保证线程安全,一般使用者在访问共享变量的时候需要进行额外的同步措施才能保证线 ...

  9. Eclipse安装windowsbuilder

    详见:https://www.cnblogs.com/plusplus/p/9864708.html https://www.cnblogs.com/lsy-blogs/p/7717036.html ...

  10. 【python+ddt】DDT模块的使用

    ddt模块包含了一个类的装饰器ddt和两个方法的装饰器: data:包含多个你想要传给测试用例的参数: file_data:会从json或yaml中加载数据: unpanck:通常data中包含的每一 ...