bzoj 5072
对于某一大小的连通子图包含的黑点的数目的最大值和最小值都能取到
考虑树形dp
$f[i][j]$ 表示从 $i$ 的子树中选出大小为 $j$ 的联通子图黑点数目的最小值
$g[i][j]$ 表示从 $i$ 的子树中选出大小为 $j$ 的联通子图黑点数目的最大值
树形dp转移
#include <bits/stdc++.h> const int N = ; #define gc getchar() inline int read() {
int x = ; char c = gc;
while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x;
} int head[N], cnt;
struct Node {
int u, v, nxt;
} G[N << ];
int n, q;
int v[N];
int f[N][N], g[N][N];
int size[N]; inline void Add(int u, int v) {G[++ cnt].v = v; G[cnt].nxt = head[u]; head[u] = cnt;} void Dfs(int x, int fa) {
size[x] = , f[x][] = g[x][] = v[x];
for(int i = head[x]; ~ i; i = G[i].nxt) {
int v = G[i].v;
if(v != fa) {
Dfs(v, x);
for(int j = size[x]; j >= ; j --) {
for(int k = size[v]; k >= ; k --) {
f[x][j + k] = std:: min(f[x][j + k], f[x][j] + f[v][k]);
g[x][j + k] = std:: max(g[x][j + k], g[x][j] + g[v][k]);
}
}
size[x] += size[v];
}
}
for(int i = ; i <= n; i ++) {
f[][i] = std:: min(f[][i], f[x][i]);
g[][i] = std:: max(g[][i], g[x][i]);
}
} int main() {
int t = read();
for(; t; t --) {
cnt = ;
memset(f, 0x3f, sizeof f);
memset(g, 0xc0, sizeof g);
n = read(); q = read();
for(int i = ; i <= n; i ++) head[i] = -;
for(int i = ; i < n; i ++) {
int u = read(), v = read();
Add(u, v), Add(v, u);
}
for(int i = ; i <= n; i ++) v[i] = read();
Dfs(, );
for(; q; q --) {
int x = read(), y = read();
if(f[][x] <= y && y <= g[][x]) puts("YES");
else puts("NO");
}
puts("");
}
return ;
}
bzoj 5072的更多相关文章
- bzoj 5072 [Lydsy1710月赛]小A的树——树形dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5072 发现对于每个子树,黑点个数确定时,连通块的大小取值范围一定是一段区间:所以考虑只最小化 ...
- bzoj 5072 小A的树 —— 树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5072 由于对于一个子树,固定有 j 个黑点,连通块大小是一个连续的范围: 所以记 f[i][ ...
- [BZOJ 5072]小A的树
Description 题库链接 给你 \(n\) 个节点的一棵树,点分黑白. \(q\) 组询问,每次询问类似于"是否存在树中 \(x\) 个点的连通块恰有 \(y\) 个黑点" ...
- [BZOJ 5072][Lydsy1710月赛]小A的树
传送门 \(\color{green}{solution}\) 嗯...其实我也不太会,所以大胆猜个结论吧(后来证了一下,然后放弃了...). 我们发现如果要使一个联通块的黑点数量为\(k\)的方案最 ...
- BZOJ 2127: happiness [最小割]
2127: happiness Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 1815 Solved: 878[Submit][Status][Di ...
- BZOJ 3275: Number
3275: Number Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 874 Solved: 371[Submit][Status][Discus ...
- BZOJ 2879: [Noi2012]美食节
2879: [Noi2012]美食节 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1834 Solved: 969[Submit][Status] ...
- bzoj 4610 Ceiling Functi
bzoj 4610 Ceiling Functi Description bzoj上的描述有问题 给出\(n\)个长度为\(k\)的数列,将每个数列构成一个二叉搜索树,问有多少颗形态不同的树. Inp ...
- BZOJ 题目整理
bzoj 500题纪念 总结一发题目吧,挑几道题整理一下,(方便拖板子) 1039:每条线段与前一条线段之间的长度的比例和夹角不会因平移.旋转.放缩而改变,所以将每条轨迹改为比例和夹角的序列,复制一份 ...
随机推荐
- (1+x)^n
#include<stdio.h> int main() { int n,i; while(scanf("%d %d",&n,&i)!=EOF) { i ...
- Windows计划任务无法写Log的问题
参照:https://www.cnblogs.com/jonezzz/p/10364153.html 使用WIndows计划任务去执行Exe文件时无法写Log,而Exe双击执行就能写Log,这是由于计 ...
- Neo4j查询语句总结
最近一直在做图数据库的相关工作,对neo4j的查询语言Cypher使用较多,故在此总结记录.Cypher作为图数据库的查询语言,感觉和关系型数据库的查询语言sql差不多吧. 1.如何找到一个节点x,x ...
- C++万能头文件<bits/stdc++.h>的内容与优缺点
最近发现了一个C++的头文件bits/stdc++.h,听说这是一个几乎包含了所有C++库函数的头文件,就想更深入的了解一下,下面是头文件内容 // C++ includes used for pre ...
- ORACLE:锁被未决分布式事务处理 18.27.160617 持有
1. 以管理员账号登陆 2. rollback force '18.27.160617 ';
- Spring Boot 项目集成 Alibaba Druid
Druid 是一个非常好用的数据库连接池,但是他的好并不止体现在作为一个连接池加快数据访问性能上和连接管理上,他带有一个强大的监控工具:Druid Monitor.不仅可以监控数据源和慢查询,还可以监 ...
- 重装win7后如何恢复ubuntu引导
在重装系统之后,开机启动界面的ubuntu引导不见了,直接进入新安装的window系统中.下面是如何恢复ubuntu引导的方法: 1)准备一张ubuntu系统安装盘: 2)将ubuntu系统安装盘放入 ...
- wstngfw中配置snort
wstngfw中配置snort 概述 Snort是入侵检测和预防系统.它可以将检测到的网络事件记录到日志并阻止它们.Snort使用称为规则的检测签名进行操作. Snort规则可以由用户自定义创建,或者 ...
- 当SAP云平台account的service Marke place里找不到Machine Learning服务该怎么办
问题症状: 我在CloudFoundry环境的Service Market place里根本找不到Leonardo ML foundation这组服务. 解决方案: 进入global Account- ...
- Java知识导航总图
1.系统构架 企业服务总线(ESB).微服务.面向服务的架构(SOA) 了解分布式文件存储系统,掌握集群化开发及部署 2.系统系统集成技术 Wsbservice.Socket 3.RPC远程调用的相关 ...