今天闲,测试了下concurrent.futures 模块中的ThreadPoolExecutor,ProcessPoolExecutor。

对开不同的数量的进程池和任务量时,所耗时间。

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
import requests
import time,os
def get_page(url):
#print('<%s> is getting [%s]'%(os.getpid(),url))
response = requests.get(url)
#time.sleep(5)
if response.status_code==200: #200代表状态:下载成功了
return {'url':url,'text':response.text}
def parse_page(res):
res = res.result()
#print('<%s> is getting [%s]'%(os.getpid(),res['url']))
with open('db.txt','a') as f:
parse_res = 'url:%s size:%s\n'%(res['url'],len(res['text']))
f.write(parse_res)
if __name__ == '__main__':
start = time.time()
p = ThreadPoolExecutor(max_workers=15)
#p = ProcessPoolExecutor()
l = [ ]
for x in range(200):
l.append('https://www.sina.com.cn/')
for url in l:
res=p.submit(get_page,url)
#res = p.submit(get_page,url).add_done_callback(parse_page) #这里的回调函数拿到的是一个对象。得
# 先把返回的res得到一个结果。即在前面加上一个res.result() #谁好了谁去掉回调函数
# 回调函数也是一种编程思想。不仅开线程池用,开线程池也用
p.shutdown() #相当于进程池里的close和join
print('主',os.getpid())
print(time.time() - start) start = time.time()
# p = ThreadPoolExecutor()
p = ProcessPoolExecutor(max_workers=15)
for url in l:
res = p.submit(get_page, url)
# res = p.submit(get_page,url).add_done_callback(parse_page) #这里的回调函数拿到的是一个对象。得
# 先把返回的res得到一个结果。即在前面加上一个res.result() #谁好了谁去掉回调函数
# 回调函数也是一种编程思想。不仅开线程池用,开线程池也用
p.shutdown() # 相当于进程池里的close和join
print('主', os.getpid())
print(time.time() - start) 
aaMacBook-Pro:~ aa$  system_profiler SPHardwareDataType
Hardware: Hardware Overview: Model Name: MacBook Pro
Model Identifier: MacBookPro14,1
Processor Name: Intel Core i5
Processor Speed: 2.3 GHz
Number of Processors: 1
Total Number of Cores: 2
L2 Cache (per Core): 256 KB
L3 Cache: 4 MB
Hyper-Threading Technology: Enabled
Memory: 16 GB
Boot ROM Version: 198.0.0.0.0
SMC Version (system): 2.43f6
Serial Number (system): FVFYL11EHV2H
Hardware UUID: 39CD8397-D284-5356-BAF4-3E6CE64250C6

python 进程池和任务量变化测试的更多相关文章

  1. python(进程池/线程池)

    进程池 import multiprocessing import time def do_calculation(data): print(multiprocessing.current_proce ...

  2. python进程池:multiprocessing.pool

    本文转至http://www.cnblogs.com/kaituorensheng/p/4465768.html,在其基础上进行了一些小小改动. 在利用Python进行系统管理的时候,特别是同时操作多 ...

  3. python进程池剖析(三)

    之前文章对python中进程池的原理.数据流以及应用从代码角度做了简单的剖析,现在让我们回头看看标准库中对进程池的实现都有哪些值得我们学习的地方.我们知道,进程池内部由多个线程互相协作,向客户端提供可 ...

  4. python进程池剖析(二)

    之前文章中介绍了python中multiprocessing模块中自带的进程池Pool,并对进程池中的数据结构和各个线程之间的合作关系进行了简单分析,这节来看下客户端如何对向进程池分配任务,并获取结果 ...

  5. python进程池剖析(一)

    python中两个常用来处理进程的模块分别是subprocess和multiprocessing,其中subprocess通常用于执行外部程序,比如一些第三方应用程序,而不是Python程序.如果需要 ...

  6. 万里长征第一步:Python进程池的一点点小坑

    # -*- coding: utf- -*- """ Created on Thu Mar :: @author: lilide """ # ...

  7. python进程池

    当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiproce ...

  8. python 进程池的简单使用方法

    回到python,用一下python的进程池. 记得之前面试的时候,面试官问:你知道进程池的默认参数吗? 我没有回答上来,后来才知道,是有默认参数的.下面就看看它的默认参数 1. 不加参数 from ...

  9. python 进程池pool简单使用

    平常会经常用到多进程,可以用进程池pool来进行自动控制进程,下面介绍一下pool的简单使用. 需要主动是,在Windows上要想使用进程模块,就必须把有关进程的代码写if __name__ == ‘ ...

随机推荐

  1. Intellij IDEA 快捷键大全【转】

    IntelliJ Idea 常用快捷键列表 Ctrl+Shift + Enter,语句完成 “!”,否定完成,输入表达式时按 “!”键 Ctrl+E,最近的文件 Ctrl+Shift+E,最近更改的文 ...

  2. #LOF算法

    a.每个数据点,计算它与其他点的距离 b.找到它的K近邻,计算LOF得分 clf=LocalOutlierFactor(n_neighbors=20,algorithm='auto',contamin ...

  3. 理解JVM之垃圾回收

    1.垃圾收集算法 1) 标记-清楚算法:该算法是最基础的收集算法,其分为标记与清除两个阶段.首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象,该算法主要有两个不足:一个是效率问题,标 ...

  4. Signal Processing and Pattern Recognition in Vision_15_RANSAC:Performance Evaluation of RANSAC Family——2009

    此部分是 计算机视觉中的信号处理与模式识别 与其说是讲述,不如说是一些经典文章的罗列以及自己的简单点评.与前一个版本不同的是,这次把所有的文章按类别归了类,并且增加了很多文献.分类的时候并没有按照传统 ...

  5. EtherNet/IP 协议应用层使用CIP协议&CIP协议中使用的TLS和DTLS(Network Infrastructure for EtherNet/IPTM: Introduction and Considerations)

  6. 切换composer国内镜像 Laravel China停用,切换阿里云composer全量镜像

    composer config -g repo.packagist composer https://packagist.phpcomposer.com Laravel China 镜像完成历史使命, ...

  7. NORDIC 烧录BLE协议栈后不能用JLINK仿真bootloader问题及修改方案

    问题原因: bootloader的程序区域是0X78000~0X7E000 但是在bootloader程序中定义了0X0FF8与0XFFC位置处的数据,此数据与BLE协议栈冲突,BLE协议栈的flas ...

  8. 【转】ufw 端口

    1.扫描端口 用ubuntu自带的网络工具中的端口扫描不够强大,扫描结果可能不全,推荐用nmap,黑客常用的端口扫描利器!安装方法:sudo apt-get install nmap ,想扫描端口nm ...

  9. 2018江苏徐州icpc试题-A-生化危机【多源点-基础广搜】

  10. JAVA遇见HTML——JSP篇(JSP状态管理)

    案例:Cookie在登录中的应用 URL编码与解码的工具类解决中文乱码的问题,这个工具类在java.net.*包里 编码:URLEncoder.encode(String s,String enc)/ ...