UOJ42. 【清华集训2014】Sum
Sol
\((-1)^a=1-2(a~mod~2)=1-2a+4\lfloor\frac{a}{2}\rfloor\)
那么原式变成 \(n-2\sum_{i=1}^{n}\lfloor d\sqrt{r}\rfloor+4\sum_{i=1}^{n}\lfloor \frac{d\sqrt{r}}{2}\rfloor\)
考虑计算这样一个东西
\]
如果 \(\sqrt{r}\) 是一个整数,直接 \(\Theta(1)\) 计算
否则
设 \(k=\frac{a*\sqrt{r}+b}{c}\)
如果 \(k\ge 1\) 那么可以把 \(k\) 的整数部分的值算出来,变成 \(0<k<1\)
如果 \(0<k<1\),即就是计算 \(y=kx\) 与 \(x=n\) 所围成三角形的整点个数
根据类欧几里得那一套理论,我们用矩形的减去左上角的三角形的
矩形的就是 \(n\lfloor nk\rfloor\)
左上角的三角形的把它关于 \(y=x\) 对称,变成求 \(y=\frac{x}{k}\) 与 \(x=\lfloor nk\rfloor\) 所围成三角形的整点个数
这样可以递归下去,\(n\) 的规模减小得很快,最后计算 \(n\le 1\) 的答案即可
为了防止精度误差,可以把 \(k\) 表示成 \(\frac{a*\sqrt{r}+b}{c}\) 将 \(a,b,c\) 存下来
每次弄走 \(gcd\) 就可以了
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n, ans, r, test;
double sq;
inline ll Gcd(ll a, ll b) {
if (!a || !b) return a | b;
return !b ? a : Gcd(b, a % b);
}
inline ll Solve(ll a, ll b, ll c, ll len) {
if (!len) return 0;
register ll sk, nxt, ret, d;
d = Gcd(Gcd(a, b), c), a /= d, b /= d, c /= d;
if (len == 1) return (ll)(1.0 * (sq * a + b) / c);
register double k = 1.0 * (sq * a + b) / c;
sk = (ll)k, k -= sk, nxt = (ll)(k * len), b -= c * sk;
ret = len * nxt + sk * (len + 1) * len / 2;
return ret - Solve(a * c, -b * c, a * a * r - b * b, nxt);
}
int main() {
scanf("%d", &test);
while (test--) {
scanf("%d%d", &n, &r), sq = sqrt(r), ans = sq;
if (ans * ans == r) printf("%d\n", (ans & 1) ? ((n & 1) ? -1 : 0) : n);
else printf("%lld\n", n - 2 * Solve(1, 0, 1, n) + 4 * Solve(1, 0, 2, n));
}
return 0;
}
UOJ42. 【清华集训2014】Sum的更多相关文章
- 清华集训2014 sum
清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了 ...
- BZOJ3817 清华集训2014 Sum 类欧几里得
传送门 令\(\sqrt r = x\) 考虑将\(-1^{\lfloor d \sqrt r \rfloor}\)魔改一下 它等于\(1-2 \times (\lfloor dx \rfloor \ ...
- uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题
[清华集训2014]矩阵变换 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...
- AC日记——【清华集训2014】奇数国 uoj 38
#38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...
- UOJ#46. 【清华集训2014】玄学
传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...
- UOJ#42. 【清华集训2014】Sum 类欧几里德算法
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ42.html 题解 首先我们把式子改写一下: $$(-1)^{\lfloor a\rfloor} \\=1 ...
- 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理
题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...
- BZOJ3812 清华集训2014 主旋律
直接求出强联通生成子图的数量较难,不妨用所有生成子图的数量减去非强联通的. 非强联通生成子图在所点后满足编号最小的点所在的强联通分量不是全集. 由于$n$很小,我们可以考虑状态压缩. 对于点集$S$, ...
- uoj#38. 【清华集训2014】奇数国(线段树+数论)
传送门 不难看出就是要先求区间积,再求这个区间积的\(\varphi\) 因为\(\varphi(x)=x\times\frac{p_1-1}{p_1}\times\frac{p_2-1}{p_2}\ ...
随机推荐
- GitHub创建项目,保存代码。
平时学习会写一些代码,虽然只是零零散散的功能,但是基本都是在一个项目下操作,偶尔会忘记代码编辑顺序.国庆这几天在家,想把GitHub用起来,实现自己代码的可追溯,可查询.学习本篇博客,你需要一点的Gi ...
- Linux之解决命令行cat命令中文乱码
临时解决cat中文乱码 cat test.txt | iconv -f GBK -t UTF-8
- leetcode-840-Magic Squares In Grid
题目描述: A 3 x 3 magic square is a 3 x 3 grid filled with distinct numbers from 1 to 9 such that each r ...
- 树形DP学习笔记
树形DP 入门模板题 poj P2342 大意就是一群职员之间有上下级关系,每个职员有一个快乐值,但是只有在他的直接上级不在场的情况下才会快乐.求举行一场聚会的快乐值之和的最大值. 求解 声明一个数组 ...
- [转] org.scalatest.FunSuite Scala Examples - Scala FunSuite 测试的例子
[From] https://www.programcreek.com/scala/org.scalatest.FunSuite org.scalatest.FunSuite Scala Examp ...
- Mac下像Windows那样带有预览图的快速切换-HyperSwitch
这东西是免费的,他家还出了一个HyperDock的收费软件. 下载:https://bahoom.com/hyperswitch/get 离线版本:(链接: https://pan.baidu.com ...
- 高性能web服务器(热死你)Resin Linux的安装、配置、部署,性能远超Nginx支持Java、PHP等
高性能web服务器(热死你)Resin Linux的安装.配置.部署,性能远超Nginx支持Java.PHP等 一. 安装resin 1. 下载resin: 下载地址:http://cauch ...
- WP调用api
private string GetText() { string resultString = string.Empty; HttpWebRequest request = HttpWebReque ...
- redis 持久化之 rdb 快照持久化
解释1: 虽然redis是单进程,但是它有一个单独的子进程进行rdb操作,为了保证的数据的一致性,当进行rdb操作失败的时候,主进程就停止写入 所以才有了stop-write-on-bgsave-er ...
- CentOS 开启安装EPEL YUM源
我们用yum安装软件时,经常发现我们的yum源里面没有该软件,需要自己去wget,然后configure,make,make install,太折腾了. 其实,CentOS 还有一个源叫做 EPEL ...