机器学习的基本知识

,…用n个观测值测量。但我们不再对Y的预测感兴趣,因为我们不再有Y了,我们唯一感兴趣的是在已有的特征上发现数据模式:

在前面的图中,我们可以看到这样的数据本身更适合于非线性方法,在这种方法中,数据似乎是按重要性分组的。它是非线性的,因为我们无法得到一条直线来准确地分离和分类数据。无监督学习允许我们在几乎不知道结果会是什么或应该是什么的情况下解决问题。结构来自于数据本身,而不是应用于输出标签的监督规则。这种结构通常由数据的聚类关系导出。

例如,假设我们有许多个基因来自我们的基因组数据科学实验。我们希望将这些数据分组为类似的片段,如头发颜色、寿命、体重等等。

第二个例子是众所周知的酒会效应,它基本上指的是大脑能够将注意力集中到一件事上,并过滤掉周围的噪音。

这两个示例都可以使用集群来实现它们的目标。

强化学习

强化学习是一种机器被训练为一个特定的结果,唯一的目的是最大化的效率和/或性能。该算法因做出正确的决策而得到奖励,因做出错误的决策而受到惩罚。持续的训练是为了不断提高绩效。持续的学习过程意味着更少的人为干预。马尔可夫模型是强化学习的一个例子,自动驾驶汽车就是这样一个应用的很好的例子。它不断地与环境进行交互,监视障碍物、速度限制、距离、行人等等,以便(希望如此)做出正确的决策。

我们与强化学习最大的不同是我们没有处理正确的输入和输出数据。这里的重点是性能,这意味着需要在看不见的数据和算法已经学过的东西之间找到一种平衡。

算法将一个动作应用到它的环境中,根据它所做的、重复的等行为接受奖励或惩罚,如下图所示。你可以想象一下每秒有多少次这种情况发生在刚刚在酒店接你的自动驾驶出租车上。

构建、购买或开源

接下来,让我们问自己一个非常重要的问题。我们是需要购买、构建还是使用开源?

接触开源世界,这是我的建议,当然也是我写这本书的原因之一。我意识到许多开发人员都有“它不是在这里构建的”综合症,但是在走上这条道路之前,我们应该对自己诚实。我们真的认为我们有能力做得更好、更快、在我们的时间限制内进行测试吗?我们应该先试着看看已经有什么可以使用。有很多很棒的开源工具包可供我们使用,这些工具包的开发人员已经投入了大量的时间和精力来开发和测试它们。显然,开源并不是每个人、每次都可以使用的解决方案,但是即使您不能在应用程序中使用它,也可以通过使用和试验它们获得大量的知识。

购买通常不是一个最佳选择。如果你足够幸运地找到要买的东西,但你可能不会得到批准,因为它将花费一大笔钱!如果你需要修改产品来做你需要的事情,会发生什么?祝您好运,能够访问源代码或者让支持团队为您更改他们的优先级。这中情况几乎不会发生,至少不会像我们需要的那么快。

至于自己构建,嘿,我们是开发者,这是我们都想做的,对吧?但是在您启动Visual Studio之前,请仔细地考虑一下您将要进入的环境。

所以开源应该永远是第一选择。您可以将其引入内部(假设许可允许您这样做),在需要时根据您的标准对其进行调整(代码联系、更多的单元测试、更好的文档,等等)。

总结

在这一章中,我们讨论了机器学习的许多方面,以及实现您的代码的不同策略,如构建、购买或开源,并简单介绍了一些重要的定义。我希望这能让你们为接下来的章节做好准备。

转载请注明出处:https://www.cnblogs.com/wangzhenyao1994/p/10223720.html

文章发表的另一个地址:https://blog.csdn.net/wyz19940328/article/details/85835239

基于C#的机器学习--机器学习的基本知识的更多相关文章

  1. 机器学习算法的基本知识(使用Python和R代码)

    本篇文章是原文的译文,然后自己对其中做了一些修改和添加内容(随机森林和降维算法).文章简洁地介绍了机器学习的主要算法和一些伪代码,对于初学者有很大帮助,是一篇不错的总结文章,后期可以通过文中提到的算法 ...

  2. H2O是开源基于大数据的机器学习库包

    H2O是开源基于大数据的机器学习库包 H2O能够让Hadoop做数学,H2O是基于大数据的 统计分析 机器学习和数学库包,让用户基于核心的数学积木搭建应用块代码,采取类似R语言 Excel或JSON等 ...

  3. 基于Docker的TensorFlow机器学习框架搭建和实例源码解读

    概述:基于Docker的TensorFlow机器学习框架搭建和实例源码解读,TensorFlow作为最火热的机器学习框架之一,Docker是的容器,可以很好的结合起来,为机器学习或者科研人员提供便捷的 ...

  4. 初识TPOT:一个基于Python的自动化机器学习开发工具

    1. TPOT介绍 一般来讲,创建一个机器学习模型需要经历以下几步: 数据预处理 特征工程 模型选择 超参数调整 模型保存 本文介绍一个基于遗传算法的快速模型选择及调参的方法,TPOT:一种基于Pyt ...

  5. 基于C#的机器学习--机器学习建模的基础

    构建ML模型的步骤 现在我们已经看了解到了一些ML应用程序的例子,问题是,我们如何构建这样的ML应用程序和系统? 下图总结了我们使用ML开发应用程序的方法,我们将在下面更详细地讨论这个问题: 如上图所 ...

  6. 【Numpy】python机器学习包Numpy基础知识学习

    一.安装:在之前的博客中已经写过:http://www.cnblogs.com/puyangsky/p/4763234.html 二.python数组切片知识: python中序列类有list.str ...

  7. 基于ray的分布式机器学习(二)

    基本思路:基于parameter server + multiple workers模式.同步方式:parameter server负责网络参数的统一管理,每次迭代均将参数发送给每一个worker,多 ...

  8. DNS通道检测 国外学术界研究情况——研究方法:基于流量,使用机器学习分类算法居多,也有使用聚类算法的;此外使用域名zif low也有

    http://www.ijrter.com/papers/volume-2/issue-4/dns-tunneling-detection.pdf <DNS Tunneling Detectio ...

  9. 基于steam的游戏销量预测 — PART 3 — 基于BP神经网络的机器学习与预测

    语言:c++ 环境:windows 训练内容:根据从steam中爬取的数据经过文本分析制作的向量以及标签 使用相关:无 解释: 就是一个BP神经网络,借鉴参考了一些博客的解释和代码,具体哪些忘了,给出 ...

随机推荐

  1. 关于如何解决bootstrap table 列 切换 刷新 高度不一样

    在使用bootstrap table时候,碰到bootstrap table 列 切换 刷新 高度不一样的问题,如图所示: 解决这个问题很简单,在你的页头加一句<!DOCTYPE html> ...

  2. Python 学习笔记(十三)Python函数(一)

    函数基础 函数:函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.Python提供了许多内建函数,比如print().可以自己创建函数,这 ...

  3. TXT文件转换成DataSet数据集

    /// <summary> /// TXT文件转换成DataSet数据集 /// </summary> /// <param name="FilePath&qu ...

  4. docker 入门 (二)基本操作

    这一篇讲docker的基本操作. 请自行安装docker到自己的电脑上. 镜像的获取 要获取镜像,最简单的当然是从仓库去获取,docker的官方网站很不好练,其他的可选项有docker中国官网,阿里镜 ...

  5. c# 在WebBrowser中用SendMessage模拟鼠标点击

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  6. NFS服务的搭建

    NFS服务的作用:提供网络文件系统给客户机 nfs服务器的安装配置和使用: 1.将已经制作好的文件系统rootfs_fs210_audio.tgz 拷贝到 /opt,并解压(这里的/opt目录是通过s ...

  7. Python3 透明网桥算法

    import time #定义网桥1 b1 = {} port_list1 = [1, 2] #主机列表 L1 = ['a','b','c'] L2 = ['d','e'] L = [L1,L2] d ...

  8. intel-FPGA的片内存储器问题

    FPGA的片内有很多的存储器资源,可以配置成单端口的ROM.RAM和双端口的ROM.RAM,以及移位寄存器和FIFO等.在学习过程中,笔者遇到过几个小问题,总结如下: 片内是不是有ROM或者RAM? ...

  9. [POJ1741]Tree(点分治)

    树分治之点分治入门 所谓点分治,就是对于树针对点的分治处理 首先找出重心以保证时间复杂度 然后递归处理所有子树 对于这道题,对于点对(u,v)满足dis(u,v)<=k,分2种情况 路径过当前根 ...

  10. 转 关于window10安装jdk,配置环境变量,javac不是内部或外部命令,也不是可运行的程序 或批处理文件的细节问题。

    今日拿到一台新的window10笔记本电脑,非常熟练的安装了JDK(因为在学校经常给同学安装JDK - -)但是发现java java -version命令都可以使用,唯独javac命令出现不是内部或 ...