Keras-RetinaNet

在自标数据集 alidq 上训练 detection model RetinaNet

模型部署与环境配置

参考README

数据预处理

数据统计信息:

  • 类别:gun1, gun2
  • 有效数据量:23216
  • 测试集大小:1000
  • 训练验证集大小:22216

由于此次 detection 任务比较简单,为了实验 fine tuning 对模型的影响,我们将训练数据分为 3 个部分,实验在第 1 部分数据上完成。

Part 1 训练数据统计量:

  • gun1 数量:2826
  • gun2 数量:3170
  • 预处理需要将标注数据文件格式转换为固定格式的 csv 文件,schema 为:

    path/to/imagefile,xmin,ymin,xmax,ymax,classname
  • 我们标注的 Raw data 中包含的信息量是足够的,但需要一些针对模型的数据格式调整;
  • 除了 Bounding Box 的坐标和类别名,我们还需要定义类别名到类别ID 映射(class name to class ID mapping),ID 从 0 开始。在这次的例子里很简单,在数据集目录新建一个 csv 文件,其内容为:

    gun1,0

    gun2,1
  • 需要提出的一点是:如果没有特殊要求,我们交付的数据中,Bounding Box 的坐标最好按照普遍通用的顺序处理好,即xmin,ymin,xmax,ymax
  • 预处理完成后,可以使用 keras-retinanet 中的调试工具 debug.py 检查 csv 是否有效且观察标注框在图中的效果:
$ python keras-retinanet/bin/debug.py csv
/path/to/annotations /path/to/class_label_mapping

$ retinanet-debug csv /path/to/annotations /path/to/class_label_mapping

注:无效标注的框呈红色,有效标注为绿色。

训练

下载在 coco 数据集上训练好的模型 resnet50_coco_best_v2.1.0.h5snapshot/

数据准备完成且确认无误后就可以开始训练了。

此次训练起点是预训练过的 resnet50_coco_best_v2.1.0.h5steps=6000epochs=5,在 K80 显卡训练的时间大概是 5-6 小时。

$ python keras-retinanet/bin/train.py --weights snapshots/resnet50_coco_best_v2.1.0.h5 --steps 6000 --epochs 5 --gpu 0 csv /path/to/annotations /path/to/class_label_mapping
$ retinanet-train --weights snapshots/resnet50_coco_best_v2.1.0.h5 --steps 6000 --epochs 5 --gpu 0 csv /path/to/annotations /path/to/class_label_mapping

评价

训练完成后,我们需要用 1000 条测试数据对模型的 performance 做出评价。我在准备评价数据时,发现标注数据(我们标注的 Ground Truth)存在大约 5% 的错误分类。这些错误分类是我通过人工辨识 model 预测的结果与 GT 的差别而得到的。也就是说,刚刚训练好的 model 帮助我找到了很多标注数据的错误标注!

虽然这些错误标注在训练的时候不会产生太大影响(否则也不会帮我找错),但在做评价时会严重影响模型的 performance。可能需要借助刚训练好的 model 对 1000 个测试数据做清洗。


Written with StackEdit.

RetinaNet 迁移学习到自标数据集的更多相关文章

  1. 【47】迁移学习(Transfer Learning)

    迁移学习(Transfer Learning) 如果你要做一个计算机视觉的应用,相比于从头训练权重,或者说从随机初始化权重开始,如果你下载别人已经训练好网络结构的权重,你通常能够进展的相当快,用这个作 ...

  2. NASNet学习笔记——   核心一:延续NAS论文的核心机制使得能够自动产生网络结构;    核心二:采用resnet和Inception重复使用block结构思想;    核心三:利用迁移学习将生成的网络迁移到大数据集上提出一个new search space。

    from:https://blog.csdn.net/xjz18298268521/article/details/79079008 NASNet总结 论文:<Learning Transfer ...

  3. 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)

    基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...

  4. PyTorch迁移学习-私人数据集上的蚂蚁蜜蜂分类

    迁移学习的两个主要场景 微调CNN:使用预训练的网络来初始化自己的网络,而不是随机初始化,然后训练即可 将CNN看成固定的特征提取器:固定前面的层,重写最后的全连接层,只有这个新的层会被训练 下面修改 ...

  5. 使用deeplabv3+训练自己数据集(迁移学习)

    概述 在前边一篇文章,我们讲了如何复现论文代码,使用pascal voc 2012数据集进行训练和验证,具体内容可以参考<deeplab v3+在pascal_voc 2012数据集上进行训练& ...

  6. 《A Survey on Transfer Learning》迁移学习研究综述 翻译

    迁移学习研究综述 Sinno Jialin Pan and Qiang Yang,Fellow, IEEE 摘要:   在许多机器学习和数据挖掘算法中,一个重要的假设就是目前的训练数据和将来的训练数据 ...

  7. 迁移学习-Transfer Learning

    迁移学习两种类型: ConvNet as fixed feature extractor:利用在大数据集(如ImageNet)上预训练过的ConvNet(如AlexNet,VGGNet),移除最后几层 ...

  8. [DeeplearningAI笔记]ML strategy_2_3迁移学习/多任务学习

    机器学习策略-多任务学习 Learninig from multiple tasks 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.7 迁移学习 Transfer Learninig 神 ...

  9. Gluon炼丹(Kaggle 120种狗分类,迁移学习加双模型融合)

    这是在kaggle上的一个练习比赛,使用的是ImageNet数据集的子集. 注意,mxnet版本要高于0.12.1b2017112. 下载数据集. train.zip test.zip labels ...

随机推荐

  1. 【星云测试】开发者测试(3)-采用精准测试工具对springcloud微服务应用进行穿透测试

    1.微服务简介 微服务英文名称Microservice,Microservice架构模式就是将整个Web应用组织为一系列小的Web服务.这些小的Web服务可以独立地编译及部署,并通过各自暴露的API接 ...

  2. Eclipse操作Servlet入门案例,创建类无法实现Servlet接口和继承HttpServlet类

    问题描述: 从昨天下午到今天中午,这个问题被缠绕了良久.百度了很多,却都没有一言命中要害. 首先,还是基于对Web的理解. 第一:建立的是Dynamic  Web   Project: 第二:然后需要 ...

  3. C# 删除指定目录下的所有文件及文件夹

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Tex ...

  4. mac安装配置mysql

    目录 mac安装配置mysql 1.mysql的安装 2.设置root用户的密码 3.分别执行一下命令 4.配置mysql环境变量 mac安装配置mysql 1.mysql的安装 ​ 安装过程十分简单 ...

  5. koa中静态文件资源中间件实现

    项目实践过程中,会使用非常多的静态资源,怎样可以直接在浏览器中访问到这些静态资源 const fs = require('fs'); const path = require('path'); mod ...

  6. 使用img标签能使用background-size:conver一样的效果

    使用css img { object-fit: cover; object-position:left center; } 就可以达到 和 background-size:cover; 一样的效果 共 ...

  7. Wavesurfer.js音频播放器插件的使用教程

    Wavesurfer.js是一款基于HTML5 canvas和Web Audio的音频播放器插件,本文主要记录它及其视觉效果插件Regions插件的使用方法. 1.创建实例 引入插件 import W ...

  8. 解决vscode换行光标跳转行首

    这个问题是由于设置自动保存而造成的. 解决方法1:取消自动保存. 解决方法2:在首选项的设置里加上"files.autoSaveDelay": 10000,延迟一小会自动保存的时间 ...

  9. Ubuntu16.04安装CDH5.14.2

    一.安装cloudera manager(下文简称cm) (一).环境及软件准备: 1.环境:Ubuntu16.04 desktop x 3 台 ip分别为:10.132.226.121,10.132 ...

  10. MQTT入门1 -- mosquitto 安装

    原文链接:https://www.cnblogs.com/NickQ/p/9247638.html MQTT入门1 -- mosquitto 安装 简介: MQTT(Message Queuing T ...