tensorflow 基本函数(1.tf.split, 2.tf.concat,3.tf.squeeze, 4.tf.less_equal, 5.tf.where, 6.tf.gather, 7.tf.cast, 8.tf.expand_dims, 9.tf.argmax, 10.tf.reshape, 11.tf.stack, 12tf.less, 13.tf.boolean_mask
1. tf.split(3, group, input) # 拆分函数
3 表示的是在第三个维度上, group表示拆分的次数, input 表示输入的值
import tensorflow as tf
import numpy as np x = [[1, 2], [3, 4]]
Y = tf.split(axis=1, num_or_size_splits=2, value=x) sess = tf.Session()
for y in Y:
print(sess.run(y))
2. tf.concat(3, input) # 串接函数
3 表示的是在第三个维度上, input表示的是输入,输入一般都是列表
import tensorflow as tf x = [[1, 2], [3, 4]]
y = tf.concat(x, axis=0) sess = tf.Session()
print(sess.run(y))
3. tf.squeeze(input, squeeze_dims=[1, 2]) # 表示的是去除列数为1的维度, squeeze_dim 指定维度
import tensorflow as tf
import numpy as np x = [[1, 2]]
print(np.array(x).shape)
y = tf.squeeze(x, axis=[0]) sess = tf.Session() print(sess.run(y))
4. tf.less_equal(a, b) a 可以是一个列表, b表示需要比较的数,如果比b大返回false,否者返回True
import tensorflow as tf
import numpy as np raw_gt = [1, 2, 3, 4] y = tf.where(tf.less_equal(raw_gt, 2)) sess = tf.Session() print(sess.run(y))
5.tf.where(input) # 返回是真的序号,通过tf.where找出小于等于2的数的序号
import tensorflow as tf
import numpy as np raw_gt = [1, 2, 3, 4] y = tf.where(tf.less_equal(raw_gt, 2)) sess = tf.Session()
print(sess.run(y))
6. tf.gather # 根据序列号对数据进行取值,输入的是input, index
import tensorflow as tf
import numpy as np raw_gt = [3, 4, 5, 6] y = tf.gather(raw_gt, [[0], [1]]) sess = tf.Session()
print(sess.run(y))
7. tf.cast(input, tf.float32) # 主要目的是进行数值类型转换
import tensorflow as tf
import numpy as np raw_gt = [3.0, 4.0, 5.0, 6.0] y = tf.cast(raw_gt, tf.int32) sess = tf.Session()
print(sess.run(y))
8. tf.expand_dims(input, axis=1) # 进行矩阵维度的扩增
import tensorflow as tf
import numpy as np raw_gt = [3.0, 4.0, 5.0, 6.0] y = tf.expand_dims(raw_gt, axis=1) sess = tf.Session()
print(sess.run(tf.shape(y)))
9. tf.argmax(input, axis=1) 根据维度找出这个维度下的最大值的序号, axis=0 表示找出每一行中的最大值, axis=1,表示找出每一列的最大值
import tensorflow as tf
import numpy as np raw_gt = [[3.0, 4.0], [5.0, 3]] y = tf.argmax(raw_gt, axis=1) sess = tf.Session()
print(sess.run(y))
1o. tf.reshape(input, shape) # tf.reshape主要用于数据的shape重新组合
import tensorflow as tf
import numpy as np a = [[1, 2], [3, 4]]
y = tf.reshape(a, [-1, 4]) sess = tf.Session()
print(sess.run(y))
11. tf.stack(input, axis) # 进行数据的拼接,为了去除一个维度
import tensorflow as tf
distort_left_right_random = tf.random_uniform([1], 0, 1.0, dtype=tf.float32)[0]
mirror = tf.less(tf.stack([1.0, 0.8, 1.0]), 0.5)
sess = tf.Session()
print(sess.run(mirror))
mirror = tf.boolean_mask([0, 1, 2], mirror) sess = tf.Session()
print(sess.run(mirror))
12.tf.less(a, b) # 如果a小于b返回True
13.tf.boolean_mask # 找出数据中是True的位置
mirror = tf.boolean_mask([0, 1, 2], [True, False, False]) sess = tf.Session()
print(sess.run(mirror))
13 tf.slice # 根据给出的起始位置进行数据的抽取
# tf.slice
# import tensorflow as tf
# import numpy as np
# x=[[1,2,3],[4,5,6]]
# y=np.arange(24).reshape([2,3,4])
# z=tf.constant([[[1,2,3],[4,5,6]], [[7,8,9],[10,11,12]], [[13,14,15],[16,17,18]]])
# sess=tf.Session()
# begin_x=[1,0] #第一个1,决定了从x的第二行[4,5,6]开始,第二个0,决定了从[4,5,6] 中的4开始抽取
# size_x=[1,2] # 第一个1决定了,从第二行以起始位置抽取1行,也就是只抽取[4,5,6] 这一行,在这一行中从4开始抽取2个元素
# out=tf.slice(x,begin_x,size_x)
# print(sess.run(out))
14 .tf.reduce_sum(input) 表示将所有的进行相加
15 .tf.gfile.MakeDirs(train_dir) # 根据train_dir创建文件夹
import tensorflow as tf train_dir = 'make/'
tf.gfile.MakeDirs(train_dir)
16. tf.gfile.IsDirectory(train_dir) # 判断是否是文件夹
if tf.gfile.IsDirectory(train_dir):
print('')
else:
print('')
17.tf.transpose(input, [1, 0]) # 表示将第一维的大小与第二维度进行调换
import tensorflow as tf
import numpy as np x = [[1, 2, 3, 4], [1, 2, 4, 3]]
print(np.shape(x))
sess = tf.Session()
# 进行维度的变化,perm表示将第一二维度转换为第一个维度
print(sess.run(tf.transpose(x, perm=[1, 0])))
tensorflow 基本函数(1.tf.split, 2.tf.concat,3.tf.squeeze, 4.tf.less_equal, 5.tf.where, 6.tf.gather, 7.tf.cast, 8.tf.expand_dims, 9.tf.argmax, 10.tf.reshape, 11.tf.stack, 12tf.less, 13.tf.boolean_mask的更多相关文章
- 深度学习原理与框架-Alexnet(迁移学习代码) 1.sys.argv[1:](控制台输入的参数获取第二个参数开始) 2.tf.split(对数据进行切分操作) 3.tf.concat(对数据进行合并操作) 4.tf.variable_scope(指定w的使用范围) 5.tf.get_variable(构造和获得参数) 6.np.load(加载.npy文件)
1. sys.argv[1:] # 在控制台进行参数的输入时,只使用第二个参数以后的数据 参数说明:控制台的输入:python test.py what, 使用sys.argv[1:],那么将获得w ...
- tf.split函数的用法(tensorflow1.13.0)
tf.split(input, num_split, dimension): dimension指输入张量的哪一个维度,如果是0就表示对第0维度进行切割:num_split就是切割的数量,如果是2就表 ...
- tensorflow 的tf.split函数的用法
将张量进行切分 tf.split( value, num_or_size_splits, axis=0, num=None, name='split' ) value: 待切分的张量 num_or_s ...
- tf.split
tf.split(dimension, num_split, input):dimension的意思就是输入张量的哪一个维度,如果是0就表示对第0维度进行切割.num_split就是切割的数量,如果是 ...
- 【转载】 tf.split函数的用法
原文地址: https://blog.csdn.net/uestc_c2_403/article/details/73350457 由于tensorflow 版本更新问题 用法略有修改 ----- ...
- tf.split( )和tf.unstack( )
import tensorflow as tf A = [[1, 2, 3], [4, 5, 6]] a0 = tf.split(A, num_or_size_splits=3, axis=1)#不改 ...
- Tensorflow | 基本函数介绍 简单详细的教程。 有用, 很棒
http://blog.csdn.net/xxzhangx/article/details/54606040 Tensorflow | 基本函数介绍 2017-01-18 23:04 1404人阅读 ...
- D3_book 11.2 stack
<!-- book :interactive data visualization for the web 11.2 stack 一个堆叠图的例子 --> <!DOCTYPE htm ...
- GTAC 2015将于11月10号和11号召开
今年的GTAC注册已经结束,将会在11月10号和11号在Google马萨诸塞州剑桥办公室召开.大家可以关注https://developers.google.com/google-test-autom ...
随机推荐
- django-pure-pagination使用方法
1.pip install django-pure-pagination 安装包. 2.加入app: 'pure_pagination', 3.在view中写入分布逻辑. try: page = r ...
- 身份证&银行卡识别方案
一. 调用第三方服务 腾讯云OCR识别: 实现方法:Post图片 URL到腾讯云服务器.Post图片文件 到腾讯云服务器 b. 报价: 月接口调用总量 0<调用量≤1000 1000&l ...
- ubuntu14.04安装Android Studio出现error while loading shared libraries: libz.so.1的解决方法
参考博客地址: http://blog.csdn.net/newairzhang/article/details/28656693 安装lib32z1就可以解决,如下: 首先,sudo apt-get ...
- PHP Startup: Unable to load dynamic library '/usr/lib64/php/modules/phalcon.so' - /usr/lib64/php/mod
这个警告可能是,扩展在php.d里面加载了一遍,然后又在php.ini里写了一遍导致的
- “之”字形输出二叉树 python
“之”字形输出二叉树即第1层从左到右输出,第2层从右到左输出,第3层从左到右输出......第2*n层从右到左输出,第2*n+1层从左到右输出,如下图所示二叉树,“之”字形输出的结果为:1-3-2-4 ...
- PTA编程总
7-1 币值转换 (20 分) 输入一个整数(位数不超过9位)代表一个人民币值(单位为元),请转换成财务要求的大写中文格式.如23108元,转换后变成“贰万叁仟壹百零捌”元.为了简化输出,用小写英文字 ...
- [BZOJ3162]独钓寒江雪
bzoj description 你要给一个树上的每个点黑白染色,要求白点不相邻.求本质不同的染色方案数. 两种染色方案本质相同当且仅当对树重新标号后对应节点的颜色相同. \(n\le 5\times ...
- vue项目之webpack打包静态资源路径不准确
摘自:https://blog.csdn.net/viewyu12345/article/details/83187815 问题 将打包好的项目部署到服务器,发现报错说图片找不到. 静态资源如js访问 ...
- HBase的几个实示例(二)
1 开发环境 在进行Hbase开发前,需要安装JDK.Hadoop和Hbase,选择一款合适的开发IDE,具体安装方法就不介绍了,我的开发环境: 操作系统:Ubuntu Java版本:jdk1.8 H ...
- 【Xamarin】Visual Studio 2013 Xamarin for Android开发环境搭建与配置&Genymotion
Xamarin Xamarin是基于Mono的平台. Xamarin旨在让开发者可以用C#编写iOS, Android, Mac应用程序,也就是跨平台移动开发. 下载资源 1,进入Xamarin官方网 ...