【codeforces914G】Sum the Fibonacci FWT+FST(快速子集变换)
给出一个长度为 $n$ 的序列 $\{s\}$ ,对于所有满足以下条件的五元组 $(a,b,c,d,e)$ :
- $1\le a,b,c,d,e\le n$ ;
- $(s_a|s_b)\&s_c\&(s_d\text{^}s_e)=2^i$ ,其中 $i$ 为非负整数 ;
- $s_a\&s_b=0$ 。
求 $f(s_a|s_b)\times f(s_c)\times f(s_d\text{^}s_e)$ 的和模 $10^9+7$,其中 $f(i)$ 表示斐波那契数列的第 $i$ 项( $f(0)=0,f(1)=1$ )。
题解
FWT+FST(Fast-Subset-Transform)
显然是求 $cnt[s_a]$ 和 $cnt[s_b]$ 的子集卷积得出 $cnt[s_a|s_b]$ ,求 $cnt[s_d]$ 和 $cnt[s_e]$ 的异或卷积得出 $cnt[s_d\text{^}s_e]$ ,然后求 $cnt[s_a|s_b]\times f[s_a|s_b]$ 、$cnt[s_c]\times f[s_c]$ 、$cnt[s_d\text{^}s_e]\times f[s_d\text{^}s_e]$ 的与卷积,与卷积的 $2^i$ 项之和即为答案。
(子集卷积:$c$ 是 $a$ 和 $b$ 的子集卷积,当且仅当:$c[i]=\sum\limits_{j|k=i,j\&k=0}a[j]\times b[k]$ ,直观理解上等价于 $c[i]=\sum\limits_{j\in i}a[j]\times b[i-j]$ ,故称子集卷积)
异或卷积和与卷积可以直接使用FWT计算。
子集卷积的计算方法可以参考vfk集训队论文中提到的占位多项式法:
$j|k=i,j\&k=0$ 等价于 $j|k=i,|j|+|k|=|i|$ 。
因此求 $c'[p][i]=\sum\limits_{j|k=i,|j|+|k|=p}a[j]\times b[k]=\sum\limits_{j|k=i,|j|+|k|=p}a'[|j|][j]\times b'[|k|][k]=\sum\limits_{j|k=i,q+r=p}a'[q][j]+b'[r][k]$ ,那么 $c[i]=c'[|i|][i]$ 。
其中 $|i|$ 表示 $i$ 集合的大小,即 $i$ 二进制中 $1$ 的个数。$a'[|i|][i]=a[i]$ ,其余为0;$b'$ 同理。
那么我们对每一个 $a'[q][]$ 和 $b'[r][]$ 分别求DWT,然后进行类似背包合并的卷积,再求IDWT即可。这个部分的时间复杂度为 $O(2^{17}·17^2)$ 。
因此总的时间复杂度为 $O(2^{17}·17^2+2^{17}·17·常数)$ 。
这里我脑残了... $cnt[s_a,s_b,s_c,s_d,s_e]$ 都是一样的,因此可以减少DWT的次数... 不管了反正A了...
#include <cstdio>
#include <algorithm>
#define N 131100
#define mod 1000000007
#define inv 500000004
using namespace std;
typedef long long ll;
int s[1000010] , cnt[N];
ll fib[N] , a[18][N] , b[18][N] , c[N] , d[N] , e[N] , f[18][N];
int main()
{
int n , m = 1 , mx = 0 , k , i , j;
ll t , ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &s[i]) , mx = max(mx , s[i]);
while(m <= mx) m <<= 1;
fib[1] = 1;
for(i = 2 ; i < m ; i ++ ) fib[i] = (fib[i - 1] + fib[i - 2]) % mod;
for(i = 1 ; i < m ; i ++ ) cnt[i] = cnt[i - (i & -i)] + 1;
for(i = 1 ; i <= n ; i ++ ) a[cnt[s[i]]][s[i]] ++ , b[cnt[s[i]]][s[i]] ++ , c[s[i]] ++ , d[s[i]] ++ , e[s[i]] ++ ;
for(i = 0 ; i < m ; i ++ ) c[i] = c[i] * fib[i] % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) t = d[j] , d[j] = (d[j - i] - t + mod) % mod , d[j - i] = (d[j - i] + t) % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) t = e[j] , e[j] = (e[j - i] - t + mod) % mod , e[j - i] = (e[j - i] + t) % mod;
for(i = 0 ; i < m ; i ++ ) d[i] = d[i] * e[i] % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) t = d[j] , d[j] = (d[j - i] - t + mod) * inv % mod , d[j - i] = (d[j - i] + t) * inv % mod;
for(i = 0 ; i < m ; i ++ ) d[i] = d[i] * fib[i] % mod;
for(k = 0 ; k <= cnt[m - 1] ; k ++ )
{
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) a[k][j] = (a[k][j] + a[k][j - i]) % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) b[k][j] = (b[k][j] + b[k][j - i]) % mod;
}
for(i = 0 ; i <= cnt[m - 1] ; i ++ )
for(j = 0 ; j <= cnt[m - 1] - i ; j ++ )
for(k = 0 ; k < m ; k ++ )
f[i + j][k] = (f[i + j][k] + a[i][k] * b[j][k]) % mod;
for(k = 0 ; k <= cnt[m - 1] ; k ++ ) for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) f[k][j] = (f[k][j] - f[k][j - i] + mod) % mod;
for(i = 0 ; i < m ; i ++ ) e[i] = f[cnt[i]][i] * fib[i] % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) c[j - i] = (c[j - i] + c[j]) % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) d[j - i] = (d[j - i] + d[j]) % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) e[j - i] = (e[j - i] + e[j]) % mod;
for(i = 0 ; i < m ; i ++ ) c[i] = c[i] * d[i] % mod * e[i] % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) c[j - i] = (c[j - i] - c[j] + mod) % mod;
for(i = 1 ; i < m ; i <<= 1) ans = (ans + c[i]) % mod;
printf("%lld\n" , ans);
return 0;
}
【codeforces914G】Sum the Fibonacci FWT+FST(快速子集变换)的更多相关文章
- 知识点简单总结——FWT(快速沃尔什变换),FST(快速子集变换)
知识点简单总结--FWT(快速沃尔什变换),FST(快速子集变换) 闲话 博客园的markdown也太傻逼了吧. 快速沃尔什变换 位运算卷积 形如 $ f[ i ] = \sum\limits_{ j ...
- codeforces914G Sum the Fibonacci
题目大意:给定一个长为$n$($n\leq 10^6$)的序列S,定义一个合法的五元组$(a,b,c,d,e)$合法当且仅当 $$ ( S_a \mid S_b ) and S_c and ( S_d ...
- 快速沃尔什变换(FWT) 与 快速莫比乌斯变换 与 快速沃尔什变换公式推导
后面的图片将会告诉: 如何推出FWT的公式tf 如何推出FWT的逆公式utf 用的是设系数,求系数的方法! ============================================== ...
- 快速沃尔什变换(FWT)及K进制异或卷积&快速子集变换(FST)讲解
前言: $FWT$是用来处理位运算(异或.与.或)卷积的一种变换.位运算卷积是什么?形如$f[i]=\sum\limits_{j\oplus k==i}^{ }g[j]*h[k]$的卷积形式(其中$\ ...
- CF914G Sum the Fibonacci FWT、子集卷积
传送门 一道良心的练习FWT和子集卷积的板子-- 具体来说就是先把所有满足\(s_a \& s_b = 0\)的\(s_a \mid s_b\)的值用子集卷积算出来,将所有\(s_a \opl ...
- Codeforces914G Sum the Fibonacci(FWT)
FWT大杂烩.跟着模拟做很多次FWT即可. #include<iostream> #include<cstdio> #include<cmath> #include ...
- FWT,FST入门
0.目录 目录 0.目录 1.什么是 FWT 2. FWT 怎么做 2.1. 或卷积 2.2.与卷积 2.3.异或卷积 2.4.例题 3. FST 3.1. FST 怎么做 3.2.例题 1.什么是 ...
- CF914G Sum the Fibonacci(FWT,FST)
CF914G Sum the Fibonacci(FWT,FST) Luogu 题解时间 一堆FWT和FST缝合而来的丑陋产物. 对 $ cnt[s_{a}] $ 和 $ cnt[s_{b}] $ 求 ...
- 【CF914G】Sum the Fibonacci 快速??变换模板
[CF914G]Sum the Fibonacci 题解:给你一个长度为n的数组s.定义五元组(a,b,c,d,e)是合法的当且仅当: 1. $1\le a,b,c,d,e\le n$2. $(s_a ...
随机推荐
- 【java笔记】Calendar.getInstance()是什么意思
Calendar类是个抽象类,因此本身不能被实例化,然而在却创建了Calendar 的对象,但并不是抽象类可以创建对象这个对象并不是Calendar 自身实例,而是其子类实例,这是在getInstan ...
- P2P平台投宝金融跑路?为什么我没有中雷!
编者按:市场有风险,投资需谨慎.最近,安徽合肥P2P平台"投保金融"跑路倒闭了. 今天(2016年11月8日)下午,在朋友圈看到一个分享,投宝金融跑路了,新闻媒体已经传开了. 这个 ...
- 八月暑期福利,10本Python热门书籍免费送!
八月第一周,网易云社区联合博文视点为大家带来Python专场送书福利,10本关于Python的书籍内容涉及Python入门.绝技.开发.数据分析.深度学习.量化投资等.以下为书籍简介,送书福利请见文末 ...
- 我们一起学习WCF 第四篇单通讯和双向通讯
前言:由于个人原因很久没有更新这个系列了,我会继续的更新这系列的文章.这一章是单向和双向通讯.所谓的单向就是只有发送却没有回复,双向是既有发送还有回复.就是有来无往代表单向,礼尚往来表示双向.下面我用 ...
- javaweb(十六)——JSP指令
一.JSP指令简介 JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分. 在JSP 2.0规范中共定义了三个指令: pa ...
- 如何下载YouTube 60fps视频
YouTube上面不仅支持分辨率为4K和8K的视频,同时也开启了对60fps视频的支持.60帧的视频广泛用于游戏和体育视频中,使视频看起来更加流畅和细腻.对游戏玩家来说,YouTube对60fps支持 ...
- 利用PreparedStatement预防SQL注入
1.什么是sql注入 SQL 注入是用户利用某些系统没有对输入数据进行充分的检查,从而进行恶意破坏的行为. 例如登录用户名采用 ' or 1=1 or username=‘,后台数据查询语句就变成 ...
- Mybatis利用拦截器做统一分页
mybatis利用拦截器做统一分页 查询传递Page参数,或者传递继承Page的对象参数.拦截器查询记录之后,通过改造查询sql获取总记录数.赋值Page对象,返回. 示例项目:https://git ...
- gopherjs
An example implementation of a GopherJS client and a Go server using the Improbable gRPC-Web impleme ...
- [T-ARA][너 때문에 미쳐][因为你而疯了]
歌词来源:http://music.163.com/#/song?id=5402880 作曲 : 赵英秀/김태현 [作曲 : 赵英秀/k/gim-Tae-hyeon] 作词 : 辉星 [作词 : 辉星 ...