借鉴自:https://blog.csdn.net/dyx404514/article/details/41831947

定义母串S,和子串T,设S的长度为n,T的长度为m,求T与S的每一个后缀的最长公共前缀,也就是说,设extend数组,extend[i]表示T与S[i,n-1]的最长公共前缀,要求出所有extend[i](0<=i<n)。

注意到,如果有一个位置extend[i]=m,则表示T在S中出现,而且是在位置i出现,这就是标准的KMP问题,所以说拓展kmp是对KMP算法的扩展,所以一般将它称为扩展KMP算法。

下面举一个例子,S=”aaaabaa”,T=”aaaaa”,首先,计算extend[0]时,需要进行5次匹配,直到发生失配。

从而得知extend[0]=4,下面计算extend[1],在计算extend[1]时,是否还需要像计算extend[0]时从头开始匹配呢?答案是否定的,因为通过计算extend[0]=4,从而可以得出S[0,3]=T[0,3],进一步可以得到 S[1,3]=T[1,3],计算extend[1]时,事实上是从S[1]开始匹配,设辅助数组next[i]表示T[i,m-1]和T的最长公共前缀长度。在这个例子中,next[1]=4,即T[0,3]=T[1,4],进一步得到T[1,3]=T[0,2],所以S[1,3]=T[0,2],所以在计算extend[1]时,通过extend[0]的计算,已经知道S[1,3]=T[0,2],所以前面3个字符已经不需要匹配,直接匹配S[4]和T[3]即可,这时一次就发生失配,所以extend[1]=3。这个例子很有代表性,有兴趣的读者可以继续计算完剩下的extend数组。

1. 拓展kmp算法一般步骤

通过上面的例子,事实上已经体现了拓展kmp算法的思想,下面来描述拓展kmp算法的一般步骤。

首先我们从左到右依次计算extend数组,在某一时刻,设extend[0...k]已经计算完毕,并且之前匹配过程中所达到的最远位置为P,所谓最远位置,严格来说就是i+extend[i]-1的最大值(0<=i<=k),并且设取这个最大值的位置为po,如在上一个例子中,计算extend[1]时,P=3,po=0。

现在要计算extend[k+1],根据extend数组的定义,可以推断出S[po,P]=T[0,P-po],从而得到 S[k+1,P]=T[k-po+1,P-po],令len=next[k-po+1],(回忆下next数组的定义next[i]表示T[i,m-1]和T的最长公共前缀长度),分两种情况讨论:

第一种情况:k+len<P

如下图所示:

上图中,S[k+1,k+len]=T[0,len-1],然后S[k+len+1]一定不等于T[len],因为如果它们相等,则有S[k+1,k+len+1]=T[k+po+1,k+po+len+1]=T[0,len],那么next[k+po+1]=len+1,这和next数组的定义不符(next[i]表示T[i,m-1]和T的最长公共前缀长度),所以在这种情况下,不用进行任何匹配,就知道extend[k+1]=len。

第二种情况: k+len>=P

如下图:

上图中,S[p+1]之后的字符都是未知的,也就是还未进行过匹配的字符串,所以在这种情况下,就要从S[P+1]和T[P-k+1]开始一一匹配,直到发生失配为止,当匹配完成后,如果得到的extend[k+1]+(k+1)大于P则要更新未知P和po。

至此,拓展kmp算法的过程已经描述完成,细心地读者可能会发现,next数组是如何计算还没有进行说明,事实上,计算next数组的过程和计算extend[i]的过程完全一样,将它看成是以T为母串,T为字串的特殊的拓展kmp算法匹配就可以了,计算过程中的next数组全是已经计算过的,所以按照上述介绍的算法计算next数组即可,这里不再赘述。

2. 时间复杂度分析

下面来分析一下算法的时间复杂度,通过上面的算法介绍可以知道,对于第一种情况,无需做任何匹配即可计算出extend[i],对于第二种情况,都是从未被匹配的位置开始匹配,匹配过的位置不再匹配,也就是说对于母串的每一个位置,都只匹配了一次,所以算法总体时间复杂度是O(n)的,同时为了计算辅助数组next[i]需要先对字串T进行一次拓展kmp算法处理,所以拓展kmp算法的总体复杂度为O(n+m)的。其中n为母串的长度,m为子串的长度。

const int maxn=;   //字符串长度最大值
int next[maxn],ex[maxn]; //ex数组即为extend数组
//预处理计算next数组
void GETNEXT(char *str)
{
int i=,j,po,len=strlen(str);
next[]=len;//初始化next[0]
while(str[i]==str[i+]&&i+<len)//计算next[1]
i++;
next[]=i;
po=;//初始化po的位置
for(i=;i<len;i++)
{
if(next[i-po]+i<next[po]+po)//第一种情况,可以直接得到next[i]的值
next[i]=next[i-po];
else//第二种情况,要继续匹配才能得到next[i]的值
{
j=next[po]+po-i;
if(j<)j=;//如果i>po+next[po],则要从头开始匹配
while(i+j<len&&str[j]==str[j+i])//计算next[i]
j++;
next[i]=j;
po=i;//更新po的位置
}
}
}
//计算extend数组
void EXKMP(char *s1,char *s2)
{
int i=,j,po,len=strlen(s1),l2=strlen(s2);
GETNEXT(s2);//计算子串的next数组
while(s1[i]==s2[i]&&i<l2&&i<len)//计算ex[0]
i++;
ex[]=i;
po=;//初始化po的位置
for(i=;i<len;i++)
{
if(next[i-po]+i<ex[po]+po)//第一种情况,直接可以得到ex[i]的值
ex[i]=next[i-po];
else//第二种情况,要继续匹配才能得到ex[i]的值
{
j=ex[po]+po-i;
if(j<)j=;//如果i>ex[po]+po则要从头开始匹配
while(i+j<len&&j<l2&&s1[j+i]==s2[j])//计算ex[i]
j++;
ex[i]=j;
po=i;//更新po的位置
}
}
}
const int maxn = , INF = 0x7fffffff;
int nex[maxn], ex[maxn]; void get_next(char *s)
{
int i=, j, po, len = strlen(s);
nex[] = len;
while(s[i] == s[i+] && i+ < len)
i++;
nex[] = i;
po = ;
for(int i=; i<len; i++)
{
if(i+nex[i-po] < po + nex[po])
nex[i] = nex[i-po];
else
{
j = po + nex[po] - i;
if(j < ) j = ;
while(i + j < len && s[i+j] == s[j])
j++;
nex[i] = j;
po = i;
}
}
} void get_ex(char *s1, char *s2)
{
int i=, j, po, len1 = strlen(s1), len2 = strlen(s2);
get_next(s2);
while(s1[i] == s2[i] && i < len1 && i < len2)
i++;
ex[] = i;
po = ;
for(int i=; i<len1; i++)
{
if(i + nex[i - po] < po + ex[po])
ex[i] = nex[i-po];
else
{
j = po + ex[po] - i;
if(j < ) j = ;
while(i + j < len1 && j < len2 && s1[i+j] == s2[j])
j++;
ex[i] = j;
po = i;
}
}
}

拓展kmp总结的更多相关文章

  1. hdu-4300(kmp或者拓展kmp)

    题意:乱七八糟说了一大堆,就是先给你一个长度26的字符串,对应了abcd....xyz,这是一个密码表.然后给你一个字符串,这个字符串是不完整的(完整的应该是前半部分是加密的,后半部分是解密了的),然 ...

  2. hdu-4763(kmp+拓展kmp)

    题意:给你一个串,问你满足最大字串既是前后缀,也在字符串除去前后缀的位置中出现过: 思路:我用的是拓展kmp求的前后缀,只用kmp也能解,在字符串2/3的位置后开始遍历,如果用一个maxx保存前2/3 ...

  3. poj-2752(拓展kmp)

    题意:求一个串所有的前后缀字串: 解题思路:kmp和拓展kmp都行,个人感觉拓展kmp更裸一点: 拓展kmp: #include<iostream> #include<algorit ...

  4. hdu 4333"Revolving Digits"(KMP求字符串最小循环节+拓展KMP)

    传送门 题意: 此题意很好理解,便不在此赘述: 题解: 解题思路:KMP求字符串最小循环节+拓展KMP ①首先,根据KMP求字符串最小循环节的算法求出字符串s的最小循环节的长度,记为 k: ②根据拓展 ...

  5. HDU 3613 Best Reward(拓展KMP算法求解)

    题目链接: https://cn.vjudge.net/problem/HDU-3613 After an uphill battle, General Li won a great victory. ...

  6. 拓展KMP算法详解

    拓展KMP解决的问题是给两个串S和T,长度分别是n和m,求S的每一个后缀子串与T的最长公共前缀分别是多少,记作extend数组,也就是说extend[i]表示S[i,n-1](i从0开始)和T的最长公 ...

  7. KMP&拓展KMP

    KMP算法 说明 KMP算法是一种比较高效的字符串匹配算法,可以在线性时间内求出一个串在另一个串的所有匹配位置. 解析 详解KMP 设模板串是 \(pattern\) 令 \(next[i] = ma ...

  8. Period II FZU - 1901(拓展kmp)

    拓展kmp板题 emm...我比较懒 最后一个字母进了vector两个1  不想改了...就加了个去重... 哈哈 #include <iostream> #include <cst ...

  9. Simpsons’ Hidden Talents HDU - 2594(拓展kmp)

    Sample Input clinton homer riemann marjorie Sample Output 0 rie 3 看输出才题意...拓展kmp特征很明显嘛....注意开始就匹配到尾的 ...

  10. Seek the Name, Seek the Fame POJ - 2752(拓展kmp || kmp)

    题意: 就是求前缀和后缀相同的那个子串的长度  然后从小到大输出 解析: emm...网上都用kmp...我..用拓展kmp做的  这就是拓展kmp板题嘛... 求出extend数组后  把exten ...

随机推荐

  1. 【LG3243】[HNOI2015]菜肴制作

    题面 洛谷 题解 首先我们有个非常显然的思路, 就是直接拓扑排序,用小根堆代替队列再按顺序输出,但是很显然是错的, 因为这只保证了字典序最小,而无法保证答案最优,\(<2,4>,<3 ...

  2. jquery.validate使用 - 5

    一些常用的验证脚本 不会写js了,只能从网上找一些常用的验证脚本. // 手机号码验证jQuery.validator.addMethod("mobile", function(v ...

  3. OpenCL入门:(三:GPU内存结构和性能优化)

    如果我们需要优化kernel程序,我们必须知道一些GPU的底层知识,本文简单介绍一下GPU内存相关和线程调度知识,并且用一个小示例演示如何简单根据内存结构优化. 一.GPU总线寻址和合并内存访问 假设 ...

  4. loadrunner之做压力测试要做的准备

    前提B/S架构 1.要有个备库和主库保存一致 到时候做压力测试的时候,要断开主库连接到备库.进行测试.以免主库出现垃圾数据.2.节点 判断单节点能承受多大的压力,如200万的用户账号,10万的在线用户 ...

  5. React入门基础(学习笔记)

    这篇博客是我通过阅读React官方文档的教程总结的学习笔记,翻译可能存在误差,如有疑问请参见http://reactjs.cn/react/docs/tutorial.html . 一.所需文件 在编 ...

  6. Scrapy爬豆瓣电影Top250并存入MySQL数据库

    d:进入D盘 scrapy startproject douban创建豆瓣项目 cd douban进入项目 scrapy genspider douban_spider movie.douban.co ...

  7. python-创建进程的三种方式

    目录 1,os.fork() 方法 2,Process方法 3,Pool方法 1,os.fork() 方法 import os ret = os.fork() if ret == 0: #子进程 pr ...

  8. Linux内核学习笔记(3)-- 进程的创建和终结

    一. 进程创建: Unix 下的进程创建很特别,与许多其他操作系统不同,它分两步操作来创建和执行进程: fork() 和 exec() .首先,fork() 通过拷贝当前进程创建一个子进程:然后,ex ...

  9. Hyperledger_Fabric_Model

    Hyperledger_Fabric_Model 本部分描述了Hyperledger Fabric的主要设计特点 Assets: 资产定义使得任何东西都可以通过货币值在网络中交易,从食物到老爷车再到期 ...

  10. 树状数组怒刷sum!!!(前缀和应用)

    我们知道我们利用树状数组维护的是存到其中的a[ ]数组,但是我们做题需要的是sum[ ]数组,这才是我们真正需要的有用的信息,写这篇博客的目的便是整理一下sum数组是怎么样来应用解题的. 1. Sta ...