题意

\(T\le 10^4\) 次询问 \(n,m\) ,求

\[\sum _{i=1}^n\sum _{j=1}^m[gcd(i,j)\text { is prime}]
\]

分析

这题还是很有趣的。设 \(n\le m\) 。

\[\begin{aligned}
\sum _{i=1}^n\sum_{j=1}^m[gcd(i,j)\text { is prime}]&=\sum _{i=1}^n\sum _{j=1}^m\sum _k [k\text { is prime}][gcd(i,j)=k] \\
&=\sum _{i=1}^n\sum _{j=1}^m\sum _{k|i,k|j}[k\text { is prime}]\sum _{d|\frac{i}{k},d|\frac{j}{k}}\mu(d) \\
&=\sum _{d=1}^n\mu (d)\sum _{k=1}^n[k\text { is prime}]\sum _{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum _{j=1}^{\lfloor\frac{m}{k}\rfloor}[d|i,d|j] \\
&=\sum _{d=1}^n\mu (d)\sum _{k=1}^n[k\text { is prime}]\lfloor\frac{n}{kd}\rfloor \lfloor\frac{m}{kd}\rfloor \\
&=\sum _{i=1}^n\lfloor\frac{n}{i}\rfloor \lfloor\frac{m}{i}\rfloor\sum _{k|i,k\text { is prime}}\mu(\frac{i}{k})
\end{aligned}
\]

令 \(f(x)=\sum _{k|x,k\text {is prime }}\mu (x/k)\) ,我们有:

\[ans=\sum _{i=1}^n\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{i}\rfloor f(i)
\]

\(f(x)\) 可以在线性筛的过程中顺便处理出来,求前缀和就可以做到每次询问 \(O(\sqrt n)\) 。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long giant;
inline int read() {
int x=0,f=1;
char c=getchar_unlocked();
for (;!isdigit(c);c=getchar_unlocked()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar_unlocked()) x=x*10+c-'0';
return x*f;
}
const int maxn=1e7+1;
bool np[maxn];
int p[maxn],ps=0,mu[maxn],f[maxn];
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
mu[1]=1,f[1]=0;
for (int i=2;i<maxn;++i) {
if (!np[i]) p[++ps]=i,mu[i]=-1,f[i]=1;
for (int j=1,tmp;j<=ps && (tmp=i*p[j])<maxn;++j) {
np[tmp]=true;
if (i%p[j]) mu[tmp]=-mu[i],f[tmp]=mu[i]-f[i]; else {
mu[tmp]=0;
f[tmp]=mu[i];
break;
}
}
}
for (int i=2;i<maxn;++i) f[i]+=f[i-1];
int T=read();
while (T--) {
int n=read(),m=read();
if (n>m) swap(n,m);
giant ans=0;
for (int i=1,j;i<=n;i=j+1) {
j=min(n/(n/i),m/(m/i));
ans+=(giant)(f[j]-f[i-1])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return 0;
}

bzoj2820-GCD的更多相关文章

  1. 【Learning】 莫比乌斯反演

    莫比乌斯反演 ​ 对于两个定义域为非负整数的函数\(F(n)\)和\(f(n)\) ​ 若满足:\(F(n)=\sum\limits_{d|n}f(d)\),则反演得到\(f(n)=\sum\limi ...

  2. [BZOJ2820]YY的GCD

    [BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...

  3. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

  4. 【BZOJ2820】YY的GCD

    [BZOJ2820]YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的( ...

  5. BZOJ2820 YY的GCD 【莫比乌斯反演】

    BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...

  6. BZOJ2820 YY的GCD 莫比乌斯+系数前缀和

    /** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...

  7. 【反演复习计划】【bzoj2820】YY的GCD

    这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去…… 原题意思是求以下式子:$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\ ...

  8. BZOJ2820/LG2257 YY的GCD 莫比乌斯反演

    问题描述 BZOJ2820 LG2257 题解 求 \(\sum\limits_{i=1}^{n}{\sum\limits_{j=1}^{m}{[gcd(i,j)==p]}}\) ,其中 \(p\)为 ...

  9. Bzoj-2820 YY的GCD Mobius反演,分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...

  10. [BZOJ2820][Luogu2257]YY的GCD

    BZOJ权限题 Luogu 题意:给出n,m,求: \[\sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)\mbox{为质数}]\] 多组数据,\(n\le 10^7\) s ...

随机推荐

  1. 20155327 学习基础和C语言基础调查

    20155327 学习基础和C语言基础调查 通过阅读老师推荐的五篇文章之后,其中有几个点引发了我的思考,便是"量变引起质变""循序渐进"以及"坚持&q ...

  2. 【CF613D】Kingdom and its Cities

    [CF613D]Kingdom and its Cities 题面 洛谷 题解 看到关键点当然是建虚树啦. 设\(f[x]\)表示以\(x\)为根的子树的答案,\(g[x]\)表示以\(x\)为根的子 ...

  3. 【LG4317】花神的数论题

    [LG4317]花神的数论题 题面 洛谷 题解 设\(f_{i,up,tmp,d}\)表示当前在第\(i\)位,是否卡上界,有\(tmp\)个一,目标是几个一的方案数 最后将所有\(d\)固定,套数位 ...

  4. 让div跟着鼠标移动

    朋友求助帖 具体实现代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...

  5. HTTP请求方式:GET和POST的比较

    GET和POST是HTTP的两个常用方法 什么是HTTP? 超文本传输协议(HyperText Transfer Prptocol-HTTP)是一个设计来使客户端和服务器顺利进行通讯的协议. HTTP ...

  6. 【RAC搭建报错】在RAC搭建到grid安装前的检查时,报错

    这种ip的报错,无非是检查防火墙,ip配置的原因 而我防火墙已关闭,ip也没配错 最后的原因是因为我172.16.1.41/42这两个IP选的虚拟机没有配置网段 [grid@rac01 grid]$ ...

  7. oracle的分号和斜杠/

    ;是执行语句必须的/是执行语句块必须的 比如执行一个触发器 CREATE OR REPLACE TRIGGER "TRG_1" BEFORE INSERT ON "CAT ...

  8. HDU-6315:Naive Operations(线段树+思维)

    链接:HDU-6315:Naive Operations 题意: In a galaxy far, far away, there are two integer sequence a and b o ...

  9. 牛客网暑期ACM多校训练营(第一场):E-Removal(DP)

    链接:E-Removal 题意:给出序列 s1, s2, ..., sn ,1<=s[i]<=10.问删除m个数后,有多少种不同的序列. 题解:定义dp[i][j]代表长度为i,最末尾的数 ...

  10. 『ACM C++』PTA浙大 | 基础题 - Have Fun with Numbers

    连着这两道都是开学前数构老师的“爱心作业”,还没上课开学就给我们布置作业了,这道题有点小坑,也经常遇到类似的问题,特地拿出来记录一下. -------------------------------- ...